以鋁及其合金為基體、以高性能陶瓷顆粒為增強(qiáng)相的顆粒增強(qiáng)鋁基
復(fù)合材料,具有高比強(qiáng)度、高比模量、低熱膨脹、耐疲勞、耐磨損等性能優(yōu)勢(shì),在航空航天、國(guó)防、交通運(yùn)輸?shù)阮I(lǐng)域的應(yīng)用有不可替代的優(yōu)勢(shì)[1,2]
當(dāng)前比較成熟的鋁基復(fù)合材料多以Al-Cu-Mg和Al-Mg-Si系合金為基體[3,4],其強(qiáng)度較低
Al-Zn-Mg-Cu系合金是
鋁合金中室溫強(qiáng)度最高的體系[5,6],以其作為復(fù)合材料基體有望使復(fù)合材料的強(qiáng)度更高
在陶瓷顆粒中SiC顆粒具有優(yōu)異的力學(xué)性能、穩(wěn)定的化學(xué)性質(zhì)和較低的成本,是鋁基復(fù)合材料常用的增強(qiáng)相
因此,碳化硅增強(qiáng)鋁基復(fù)合材料(SiC/Al)成為承載結(jié)構(gòu)中應(yīng)用最廣的一類(lèi)鋁基復(fù)合材料
但是,以Al-Zn-Mg-Cu合金為基體的復(fù)合材料其SiC顆粒的強(qiáng)化效果并不理想,且其強(qiáng)塑性匹配較差
Ravi等[7]用攪拌鑄造法制備的SiC/Al-Zn-Mg-Cu復(fù)合材料,與基體合金相比強(qiáng)度下降約20%
Kulkarni等[8]用擠壓鑄造法制備的SiC/Al-Zn-Mg-Cu復(fù)合材料,強(qiáng)度與基體合金基本持平
Manoharan等[9]和Ma等[10]發(fā)現(xiàn),用
粉末冶金法制備的SiC/Al-Zn-Mg-Cu復(fù)合材料強(qiáng)度比基體合金分別下降9%和6%
在SiC/Al-Zn-Mg-Cu復(fù)合材料中,除了增強(qiáng)相的強(qiáng)化作用,基體合金對(duì)材料的強(qiáng)度也有較大的貢獻(xiàn)
Al-Zn-Mg-Cu合金的主要強(qiáng)化相為細(xì)小且分布均勻的亞穩(wěn)相,如η'相、GP區(qū)等,這些亞穩(wěn)相對(duì)合金元素的含量十分敏感
在制備SiC/Al-Zn-Mg-Cu復(fù)合材料的過(guò)程中,鋁基體中的Mg元素與SiC顆粒表面的SiO2、游離Si等雜質(zhì)反應(yīng),使基體合金中Mg元素消耗和偏聚,影響鋁基復(fù)合材料基體的時(shí)效行為,使增強(qiáng)相顆粒的強(qiáng)化效果不顯著[11]
為此,必須尋找與Al-Zn-Mg-Cu基體界面不發(fā)生嚴(yán)重反應(yīng)的增強(qiáng)顆粒
有研究[12]表明,酸洗的B4C顆粒與熔融2014Al之間沒(méi)有界面反應(yīng)
Esther等[13]用攪拌鑄造法制備亞微米以及納米B4C增強(qiáng)2124Al時(shí),也得到類(lèi)似的結(jié)論
Li等[14]用粉末冶金法制備B4C/6061Al復(fù)合材料時(shí)發(fā)現(xiàn),B4C顆粒在熱壓溫度低于600℃時(shí)反應(yīng)并不明顯,反應(yīng)產(chǎn)物更傾向存在于基體合金中
Gao等[15]采用粉末冶金法制備B4C/6061Al復(fù)合材料也得到類(lèi)似的結(jié)論,只有熱壓溫度達(dá)到600℃時(shí)B4C與鋁基體才發(fā)生明顯的反應(yīng)
同時(shí),B4C顆粒的高強(qiáng)度、高硬度、高耐磨性、低熱膨脹系數(shù)、低密度等特點(diǎn),也使其成為高強(qiáng)鋁基復(fù)合材料的理想增強(qiáng)相
對(duì)基體為Al-Zn-Mg-Cu高強(qiáng)鋁合金的B4C/Al的研究,大多集中在制備工藝,沒(méi)有深入探討材料強(qiáng)度的影響因素
Sharma等[16]研究了壓力、燒結(jié)溫度、燒結(jié)時(shí)間和B4C含量對(duì)復(fù)合材料硬度和抗壓強(qiáng)度的影響,發(fā)現(xiàn)燒結(jié)溫度是除B4C含量以外影響最大的參數(shù),升高熱壓溫度界面結(jié)合良好,復(fù)合材料最高抗壓強(qiáng)度為552 MPa,硬度為186HV
通過(guò)熱壓工藝可將不同B4C含量的復(fù)合材料層制備成梯度結(jié)構(gòu)其抗壓強(qiáng)度為597 MPa的B4C/Al-Zn-Mg-Cu復(fù)合材料,防彈性能提升36.27%[17]
Wu等[18]研究了等離子活化燒結(jié)參數(shù)對(duì)7.5%B4C/7075Al復(fù)合材料的影響,發(fā)現(xiàn)530℃燒結(jié)3分鐘的復(fù)合材料已經(jīng)完全致密,界面結(jié)合良好,材料壓縮屈服強(qiáng)度可達(dá)878 MPa
在顆粒增強(qiáng)鋁基復(fù)合材料中,顆粒尺寸是影響材料力學(xué)性能的重要因素
由于增強(qiáng)顆粒與鋁合金基體的熱膨脹系數(shù)差異較大,在淬火過(guò)程中與顆粒周?chē)匿X基體產(chǎn)生錯(cuò)配位錯(cuò),出現(xiàn)一定范圍的位錯(cuò)區(qū)[19]
在體積分?jǐn)?shù)相同的情況下,隨著增強(qiáng)顆粒尺寸的減小顆粒間距也隨之減小,位錯(cuò)之間的交互作用逐漸增強(qiáng),在一定程度上使材料的屈服強(qiáng)度提高
但是,在增強(qiáng)相與鋁基體有輕微反應(yīng)的復(fù)合材料體系中,界面反應(yīng)使這一問(wèn)題更加復(fù)雜,較小增強(qiáng)顆粒的比表面積增大使界面反應(yīng)加劇,進(jìn)而影響復(fù)合材料的力學(xué)性能
同時(shí),大顆粒中較多的缺陷可能影響強(qiáng)化效果
前期的研究并沒(méi)有涉及B4C顆粒尺寸對(duì)以Al-Zn-Mg-Cu為基體的復(fù)合材料力學(xué)性能的影響
鑒于此,本文用粉末冶金法制備不同顆粒尺寸的15%(體積分?jǐn)?shù))B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料,研究增強(qiáng)顆粒尺寸對(duì)復(fù)合材料力學(xué)性能和微觀(guān)組織的影響
1 實(shí)驗(yàn)方法
實(shí)驗(yàn)用基體合金粉末的名義成分為Al-6.5Zn-2.8Mg-1.7Cu(質(zhì)量分?jǐn)?shù),%),其平均粒徑為13 μm,B4C顆粒(純度為96.5%)的平均粒徑分別為7、14、20 μm
用粉末冶金法制備復(fù)合材料坯錠
將原始粉末機(jī)械混合均勻后裝入模具進(jìn)行冷壓,然后在500℃熱壓致密
將得到的坯錠在低于420℃的溫度下熱擠壓成棒材,擠壓比為17∶1
在棒材上截取試樣進(jìn)行470℃/2 h的固溶處理并水淬至室溫,然后再進(jìn)行120℃/24 h的人工時(shí)效處理
在三種復(fù)合材料平行于擠壓方向截取金相試樣塊,用化學(xué)試劑(1 mL HF+16 mL HNO3+83 mL H2O+3 g CrO3)腐蝕后在Leica DMi8M金相顯微鏡(OM)下觀(guān)察其形貌
用D/max 2500PC型X射線(xiàn)衍射儀(XRD)分析復(fù)合材料的物相
用INSPECT F50掃描電鏡(SEM)觀(guān)察復(fù)合材料的微觀(guān)組織和分析成分
用TalosF200X透射電子顯微鏡(TEM)觀(guān)察析出相的形貌
用1000#砂紙研磨試樣使其厚度為50 μm并沖剪成直徑為3 mm的圓片
用離子減薄法制備TEM樣品,觀(guān)測(cè)面均平行于擠壓方向
用WANCE ETM系列萬(wàn)能試驗(yàn)機(jī)對(duì)三種復(fù)合材料樣品進(jìn)行拉伸實(shí)驗(yàn),拉伸棒與擠壓方向平行,應(yīng)變速率為1×10-3 s-1,樣品初始標(biāo)距L0=25 mm,直徑R=5 mm
對(duì)每種復(fù)合材料測(cè)試3個(gè)平行樣品的強(qiáng)度和延伸率,取其結(jié)果的平均值并計(jì)算標(biāo)準(zhǔn)差
2 結(jié)果和討論2.1 復(fù)合材料的顯微組織和物相
圖1給出了增強(qiáng)相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料的OM圖,可見(jiàn)B4C顆粒的分布較為均勻且沒(méi)有明顯的孔洞疏松等缺陷
還有一些細(xì)小顆粒,是部分B4C顆粒在熱擠壓過(guò)程中破碎產(chǎn)生的
B4C顆粒尺寸分別為7 μm(圖1a),14 μm(圖1b),20 μm(圖1c)的復(fù)合材料,其平均晶粒尺寸分別為3.1 μm,3.4 μm和3.9 μm
這表明,隨著B(niǎo)4C顆粒尺寸的增大平均晶粒尺寸隨之增大
其原因是:首先,因?yàn)轶w積分?jǐn)?shù)相同,尺寸較小的顆粒數(shù)量較多
數(shù)量較多的小顆粒使晶粒形核質(zhì)點(diǎn)增加和顆粒之間間距減小,使晶粒的長(zhǎng)大受到抑制
其次,復(fù)合材料熱變形時(shí)增強(qiáng)相與基體合金變形量出現(xiàn)差異,加劇了增強(qiáng)顆粒周?chē)奈诲e(cuò)增殖,從而促進(jìn)了新晶粒的生成
圖1增強(qiáng)相尺寸不同的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料的OM圖
Fig.1OM images of 15 %B4C/Al-6.5Zn-2.8Mg-1.7Cu composites with various particle sizes (a) 7 μm, (b) 14 μm, (c) 20 μm
圖2給出了增強(qiáng)相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料的背散射形貌和能譜
可以看出,與圖1給出的金相形貌相似,B4C顆粒在基體中均勻分布
三種復(fù)合材料中B4C顆粒邊緣均較為明銳,表明在500℃熱壓溫度下未發(fā)生嚴(yán)重的界面反應(yīng)
研究表明[20],B4C在液態(tài)Al中不穩(wěn)定,生成Al-B相和Al-B-C相等多種界面反應(yīng)產(chǎn)物
雖然陶瓷增強(qiáng)顆粒與金屬粉末在遠(yuǎn)低于金屬熔點(diǎn)的溫度下也發(fā)生反應(yīng),但是需要極長(zhǎng)的保溫時(shí)間[21]
Li[22]等在粉末冶金B(yǎng)4C/6061鋁復(fù)合材料中發(fā)現(xiàn),當(dāng)熱壓溫度低于600℃時(shí)界面反應(yīng)極為輕微,與本文的結(jié)果類(lèi)似
圖2增強(qiáng)相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料的SEM形貌和EDS圖
Fig.2SEM micrographs of 15 %B4C/Al-6.5Zn-2.8Mg-1.7Cu composites with various particle sizes (a) 7 μm, (b) 14 μm, (c) 20 μm, (d,e,f) EDS analysis of particles pointed out by white arrows in (a,b,c)
圖2d給出了復(fù)合材料基體的能譜,可見(jiàn)基體主要由Zn、Mg、Cu元素組成,與其名義成分基本相同
另外,在Al基體中還可觀(guān)察到一些連續(xù)分布的相,一種呈圓形(如黃色箭頭所示),另一種呈針狀(如白色箭頭所示)
能譜中的圓形相為富鎂、鋅相,如圖2e所示
針狀相為富銅、富鐵相,如圖2f所示
在Al-Zn-Mg-Cu基體合金中的MgZn2相為主要的強(qiáng)化相,部分MgZn2相在真空熱壓和擠壓過(guò)程中粗化,在固溶過(guò)程中溶解不充分使基體中殘留部分呈球狀的富鎂、鋅相
另外,在材料的制備過(guò)程中在鋁基體中引入的部分Fe元素在熱壓過(guò)程中與基體中的銅元素反應(yīng)生成Al7Cu2Fe相
Li等[23]報(bào)道,鋁基體中的Al7Cu2Fe相在550℃時(shí)才開(kāi)始溶解
由于B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料的固溶溫度僅為470℃,Al7Cu2Fe相很難溶解到基體中,從而在復(fù)合材料的基體中可觀(guān)察到部分針狀的富銅、富鐵相
圖3給出了三種復(fù)合材料的XRD譜,可見(jiàn)主要是Al和B4C的衍射峰,還出現(xiàn)一些MgZn2沉淀強(qiáng)化相的衍射峰
但是由于MgZn2峰的差異較小,無(wú)法直觀(guān)區(qū)分其含量的差異
在XRD譜中沒(méi)有界面反應(yīng)產(chǎn)物的衍射峰,Cu,F(xiàn)e化合物的含量較低也不見(jiàn)其衍射峰,與圖2的結(jié)果吻合
圖4給出了三種復(fù)合材料人工時(shí)效態(tài)在晶粒內(nèi)部以及晶界處出現(xiàn)的沉淀相的TEM形貌,如圖4a中的插圖所示,觀(guān)測(cè)方向沿[001]Al帶軸
根據(jù)形貌可以判斷,三種復(fù)合材料晶粒內(nèi)部的沉淀相(圖4a,b,c)均以η'相為主[24,25],平均長(zhǎng)度分別為5.6 nm,5.5 nm和5.4 nm
η'相作為Al-Zn-Mg-Cu合金的主要沉淀相[26],其形貌變化對(duì)基體成分的變化較為敏感
有報(bào)道[27]指出,Zn/Mg比超過(guò)2.9時(shí)η'相的尺寸隨著Zn/Mg比的提高而增大
此外,Zn/Mg比對(duì)時(shí)效速度的影響也比較大
Zn/Mg比的提高使時(shí)效動(dòng)力學(xué)加快,導(dǎo)致在人工時(shí)效時(shí)間相同的條件下η'相更加粗大
三種復(fù)合材料中沉淀相的平均長(zhǎng)度接近,表明界面反應(yīng)輕微,基體合金成分的影響較小
本文的研究與相同成分、增強(qiáng)相含量相同的SiC/Al-Zn-Mg-Cu復(fù)合材料相比,沉淀相平均尺寸更小[7]
其原因是,劇烈的SiC-Al界面反應(yīng)消耗基體中的Mg元素,使Zn/Mg比增大;而B(niǎo)4C-Al界面反應(yīng)較弱,對(duì)Zn/Mg比的影響較小
晶界處沉淀的非連續(xù)沉淀相(白色箭頭)較為粗大,尺寸約為40~100 nm
文獻(xiàn)[28]表明,晶界相為富Mg、Zn相
由于晶界能量較高,沉淀相更易于在晶界形核長(zhǎng)大
另外,晶界處元素較高的擴(kuò)散速率使沉淀相較快長(zhǎng)大
因此,在晶界容易生成一些粗大的沉淀相
增強(qiáng)相尺寸較小的復(fù)合材料其晶界處的沉淀相,其尺寸略比大尺寸增強(qiáng)相復(fù)合材料中沉淀相的尺寸大
其原因是,增強(qiáng)相尺寸較小時(shí)基體中的位錯(cuò)密度更高,加快了合金元素的擴(kuò)散
圖3增強(qiáng)相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料人工時(shí)效態(tài)的XRD譜
Fig.3XRD patterns of B4Cp/Al-Zn-Mg-Cu composites with varying particle sizes in artificial aging state (a) 7 μm, (b) 14 μm, (c) 20 μm
圖4增強(qiáng)相尺寸不同的B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料人工時(shí)效態(tài)沉淀相的TEM形貌
Fig.4Bright-field TEM images of artificially aged composites taken along [110]Al zone axis (a, d) 7 μm, (b, e) 14 μm, (c, f) 20 μm
2.2 力學(xué)性能和斷裂行為
三種復(fù)合材料的力學(xué)性能列于表1
可以看出,B4C尺寸為7 μm的復(fù)合材料其力學(xué)性能最好,抗拉強(qiáng)度達(dá)到714 MPa,延伸率3.3%
隨著增強(qiáng)顆粒尺寸的增大,復(fù)合材料的延伸率降低,屈服強(qiáng)度和抗拉強(qiáng)度降低,屈服強(qiáng)度下降6%,抗拉強(qiáng)度下降11%
這一變化規(guī)律可用Preet等[29]的研究結(jié)果解釋
他們分析不同熱處理狀態(tài)下復(fù)合材料增強(qiáng)顆粒的斷裂時(shí)發(fā)現(xiàn),在發(fā)生塑性變形前,無(wú)論處于哪種熱處理狀態(tài)增強(qiáng)顆粒的斷裂程度基本相同
而抗拉強(qiáng)度的劇烈變化,是塑性變形時(shí)增強(qiáng)顆粒斷裂情況不同所致
Table 1
表1
表1不同顆粒尺寸B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料的拉伸性能
Table 1Tensile properties of 15%B4C/Al-6.5Zn-2.8Mg-1.7Cu composites with various particle sizes
Particle
size
/ μm
|
Tensile strength
/ MPa
|
Yield strength
/ MPa
|
Elongation
/%
|
7
|
714±12
|
648±11
|
3.3±0.9
|
14
|
681±3
|
622±8
|
2.0±0.1
|
20
|
637±1
|
610±9
|
1.0±0.1
|
圖5給出了三種復(fù)合材料拉伸斷口的形貌
可以看出,三種復(fù)合材料的斷口均出現(xiàn)較為平直的黑色區(qū)域,表面光滑沒(méi)有其他附著物,可判斷是發(fā)生解理斷裂的B4C顆粒(箭頭所示)
隨著顆粒尺寸的增大,發(fā)生解理斷裂的比例隨之提高
從圖5a可見(jiàn),在增強(qiáng)顆粒周?chē)霈F(xiàn)較多的韌窩
其原因是,在塑性變形過(guò)程中優(yōu)先在Al基體中產(chǎn)生一些微孔,隨后擴(kuò)大彼此連結(jié)導(dǎo)致材料斷裂
隨著增強(qiáng)顆粒尺寸逐漸變大顆粒周?chē)幕w變得平坦,可能是增強(qiáng)顆粒先斷裂隨即對(duì)基體產(chǎn)生剪切所致
圖5不同顆粒尺寸的B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料斷口的SEM形貌
Fig.5Fractographs of 15%B4C/Al-6.5Zn-2.8Mg-1.7Cu composites with various particle sizes (a) 7 μm, (b) 14 μm, (c) 20 μm
尺寸不同的陶瓷顆粒,其傳遞載荷的效果不同
有報(bào)道指出[30],使用有限元軟件模擬圓形顆粒時(shí)發(fā)現(xiàn),尺寸較小的顆粒承受較大的載荷,并且也容易開(kāi)裂
也有學(xué)者從顆粒適配性的角度解釋材料的斷裂行為
對(duì)于強(qiáng)度較低的基體,Al2O3顆粒與SiC顆粒的強(qiáng)化效果相近
當(dāng)基體強(qiáng)度提高時(shí),強(qiáng)度更高的SiC顆粒其強(qiáng)化效果更為顯著[31]
顆粒尺寸的改變,對(duì)復(fù)合材料的力學(xué)性能和斷裂行為有極大的影響
在增強(qiáng)相為微米級(jí)的復(fù)合材料中,強(qiáng)度與增強(qiáng)相尺寸的關(guān)系尚不清晰
有學(xué)者分析Al2O3/2024Al復(fù)合材料斷裂行為時(shí)發(fā)現(xiàn),大顆粒增強(qiáng)相容易發(fā)生斷裂,并且隨著顆粒尺寸的增大復(fù)合材料的強(qiáng)度與延伸率均隨之下降[32]
Yang等[33]對(duì)復(fù)合材料原位拉伸時(shí)發(fā)現(xiàn),相對(duì)于低強(qiáng)度基體,高強(qiáng)度基體復(fù)合材料的顆粒斷裂比例更高,并且大尺寸顆粒優(yōu)先斷裂,高中低三種基體強(qiáng)度的復(fù)合材料其延伸率隨著顆粒尺寸的增大而降低
但是,也有學(xué)者得到了不同的結(jié)論
在SiC/2024Al以及SiC/2009Al中發(fā)現(xiàn),隨著顆粒尺寸的增大延伸率隨之提高[34~36]
這表明,材料的力學(xué)性能和斷裂行為的改變不能簡(jiǎn)單的歸因于基體強(qiáng)度的變化
2.3 室溫強(qiáng)化機(jī)制和斷裂機(jī)制
顆粒增強(qiáng)鋁基復(fù)合材料的強(qiáng)度可表示為[10]
σc=σpVp+σp-mVp-m+σmVm(1)
其中σc為復(fù)合材料的屈服強(qiáng)度,σp為B4C顆粒承載的應(yīng)力,σp-m為近界面淬火變形區(qū)所承受的應(yīng)力
該區(qū)域的產(chǎn)生是因?yàn)轭w粒與基體間熱膨脹系數(shù)的差異,σm為遠(yuǎn)界面基體承受的應(yīng)力,Vp、Vm、Vp-m分別為增強(qiáng)顆粒、基體以及近界面塑性區(qū)的體積分?jǐn)?shù)
σp-m和σm 可由
σp-m=σ0+Δσgb+Δσor+Δσgnd(2)
和
σm=σ0+Δσgb+Δσor(3)
計(jì)算,其中σ0 為單晶純鋁屈服強(qiáng)度,Δσgb為晶界強(qiáng)化對(duì)強(qiáng)度的貢獻(xiàn),Δσor為沉淀強(qiáng)化對(duì)強(qiáng)度的貢獻(xiàn),Δσgnd為錯(cuò)配位錯(cuò)強(qiáng)化對(duì)強(qiáng)度的貢獻(xiàn)
將增強(qiáng)顆??醋髑蝮w,近界面淬火變形區(qū)為球體外圍均勻包裹的球殼,所以Vm和Vp-m可由
Vm=R3-1(4)
和
Vp-m=1-R3Vp(5)
計(jì)算,其中R為塑性區(qū)直徑與B4C顆粒直徑的比值,隨著顆粒尺寸的增大分別為1.35、1.29和1.25
因?yàn)樵鰪?qiáng)顆粒并非規(guī)則的幾何體,可將 式(1)修正[37]為
σc=σp-m[Vp(S+2)/2]+σp-m](R3-1)Vp+
σm(1-R3Vp)(6)
其中S為B4C顆粒長(zhǎng)徑比,隨著顆粒尺寸的增大分別為1.7、1.5、1.3
使用Hall-Petch關(guān)系式可將Δσgb表示為[38]
Δσgb=kyd-1/2(7)
其中ky為霍爾佩奇系數(shù),取0.12 MPa·m1/2,d為平均晶粒尺寸,隨著顆粒尺寸的增大分別為3.1 μm、3.4 μm和3.9 μm
隨著顆粒尺寸的增大計(jì)算結(jié)果分別為68 MPa、65 MPa和61 MPa
Δσor可表示為[39]
Δσor=0.4GMbπ1-vln1.63r/bλp(8)
其中v=0.33為泊松比,r為沉淀相平均半徑等于l/π,l為沉淀相平均長(zhǎng)度,隨著顆粒尺寸的增大分別為5.6 nm、5.5 nm和5.4 nm,λp為沉淀相平均相間距為17 nm,M=3.06為晶粒平均取向因子,G=26.9 GPa為Al在室溫下的剪切模量,b=0.286 nm為位錯(cuò)柏氏矢量
隨著顆粒的增大Δσor的計(jì)算結(jié)果分別為500 MPa、495 MPa和491 MPa
Δσgnd可表示為[40]
Δσgnd=βGb122VpΔCTEΔT1-Vpbdp(9)
其中β=1.25為泰勒系數(shù);ΔCTE=2.1×10-6 K-1為B4C顆粒與Al基體的熱膨脹系數(shù)之差;dp為B4C顆粒平均尺寸,隨著顆粒尺寸的增大分別為7 μm、14 μm、20 μm;Vp=15%為B4C顆粒體積分?jǐn)?shù);ΔT=450 K為固溶溫度與室溫的差值
隨著顆粒的增大Δσgnd的計(jì)算結(jié)果分別為36 MPa、26 MPa和21 MPa
三種復(fù)合材料屈服強(qiáng)度的計(jì)算值與實(shí)驗(yàn)值相差小于5%
隨著B(niǎo)4C顆粒尺寸的增大σp 分別為172 MPa、158 MPa和146 MPa,σp-m 分別為136 MPa、104 MPa和84 MPa,σm 分別為369 MPa、391 MPa和402 MPa
小尺寸顆粒能承受更大的應(yīng)力,可分?jǐn)傄徊糠州d荷并且能提高應(yīng)變硬化能力,使平衡狀態(tài)維持更長(zhǎng)時(shí)間
因此,復(fù)合材料的強(qiáng)度和延伸率更高
大尺寸顆粒容易受到應(yīng)力集中的影響并發(fā)生解理斷裂,從而使塑性惡化
同時(shí),顆粒斷裂后不能產(chǎn)生強(qiáng)化效果
為了保持應(yīng)力平衡狀態(tài),基體不斷產(chǎn)生應(yīng)變硬化直至打破平衡基體斷裂
同時(shí),顆粒斷裂釋放集中應(yīng)力對(duì)基體產(chǎn)生破壞作用,使材料在較低的應(yīng)變硬化水平發(fā)生斷裂
3 結(jié)論
(1) 在500℃真空熱壓制備的15%B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料,沒(méi)有出現(xiàn)明顯的界面反應(yīng)
(2) B4C顆粒尺寸為7 μm的復(fù)合材料其抗拉強(qiáng)度可達(dá)714 MPa,延伸率為3.3%
隨著B(niǎo)4C尺寸的增大復(fù)合材料的強(qiáng)度和延伸率均降低
(3) 15%B4C/Al-6.5Zn-2.8Mg-1.7Cu復(fù)合材料中小尺寸B4C顆粒在變形中不易斷裂,是復(fù)合材料延伸率更高的原因
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Zhang D, Zhang G D, Li Z Q.
The current state and trend of metal matrix composites
[J]. Materials China., 2010, 29 (4): 1
[本文引用: 1]
張 荻, 張國(guó)定, 李志強(qiáng).
金屬基復(fù)合材料的現(xiàn)狀與發(fā)展趨勢(shì)
[J]. 中國(guó)材料進(jìn)展, 2010, 29(4): 1
[本文引用: 1]
[2]
Czerwinski F.
Current trends in automotive light-weighting strategies and materials
[J]. Materials., 2021, 14(21): 6631
DOIURL [本文引用: 1]
The automotive lightweighting trends, being driven by sustainability, cost, and performance, that create the enormous demand for lightweight materials and design concepts, are assessed as a part of the circular economy solutions in modern mobility and transportation. The current strategies that aim beyond the basic weight reduction and cover also the structural efficiency as well as the economic and environmental impact are explained with an essence of guidelines for materials selection with an eco-friendly approach, substitution rules, and a paradigm of the multi-material design. Particular attention is paid to the metallic alloys sector and progress in global R&D activities that cover the “l(fā)ightweight steel”, conventional aluminum, and magnesium alloys, together with well-established technologies of components manufacturing and future-oriented solutions, and with both adjusting to a transition from internal combustion engines to electric vehicles. Moreover, opportunities and challenges that the lightweighting creates are discussed with strategies of achieving its goals through structural engineering, including the metal-matrix composites, laminates, sandwich structures, and bionic-inspired archetypes. The profound role of the aerospace and car-racing industries is emphasized as the key drivers of lightweighting in mainstream automotive vehicles.
[3]
Stoyakina E.
A. Mechanical properties of aluminium-matrix composite materilas reinforced with SiC Particles, depending on the matrix alloy
[C]. Trudy VIAM., 2018
[本文引用: 1]
[4]
Jin P, Liu Y, Li S, et al.
Aerospace applications of particulate reinforced aluminum matrix composites
[J]. Mater Reports., 2009, 23(11): 24
[本文引用: 1]
金 鵬, 劉 越, 李 曙, 肖伯律.
顆粒增強(qiáng)鋁基復(fù)合材料在航空航天領(lǐng)域的應(yīng)用
[J]. 材料導(dǎo)報(bào), 2009, 23(11): 24
[本文引用: 1]
[5]
Zeng M X, Liu Z M, Li W T, et al.
Property of Al-Zn-Mg-(Cu) alloy after linear heating aging treatment
[J]. Chin.J.Mater. Res., 2015, 29(3): 235
[本文引用: 1]
曾苗霞, 林振銘, 李文濤, 等.
Al-Zn-Mg-(Cu)合金線(xiàn)性升溫時(shí)效后的性能
[J]. 材料研究學(xué)報(bào), 2015, 29(3): 235
DOI [本文引用: 1]
用差示掃描量熱分析(DSC)、硬度分析、透射電鏡(TEM)、三維原子探針(3DAP)分析等手段研究了Al-Zn-Mg-(Cu)合金線(xiàn)性升溫時(shí)效析出相的析出規(guī)律、性能變化和Cu對(duì)合金的影響
結(jié)果表明: 隨著時(shí)效溫度的提高Al-Zn-Mg合金和 Al-Zn-Mg-Cu合金的硬度先上升達(dá)到峰值然后下降, Al-Zn-Mg-Cu合金的硬度高于Al-Zn-Mg合金
線(xiàn)性升溫峰時(shí)效后兩種合金的主要析出相為η'相, 都含有少量的GP區(qū)和η相
Cu的添加改變了析出相的化學(xué)成分和結(jié)構(gòu), 延緩了亞穩(wěn)相向平衡相的轉(zhuǎn)變
[6]
Azarniya A, Taheri A K, Taheri K K.
Recent advances in ageing of 7xxx series aluminum alloys:A physical metallurgy perspective
[J]. J. Alloys Compd., 2019, 781: 945
DOIURL [本文引用: 1]
[7]
Ravi Kumar N V, Dwarakadasa E S.
Effect of matrix strength on the mechanical properties of Al-Zn-Mg/SiCP composites
[J]. Composites: Part A., 2000, 31: 1139
DOIURL [本文引用: 2]
[8]
Kulkarni M D, Robi P S, Prasad P C, et al.
Fracture toughness and fractography of cast and extruded 7075 Al-SiC particulate composites
[J]. Scripta Mater., 1994, 31(3):237
DOIURL [本文引用: 1]
[9]
Manoharan M, Lewandowski J J.
Crack initiation and growth toughness of an aluminum metal-matrix composite
[J]. Acta Metall Mater., 1990, 38(3): 489
DOIURL [本文引用: 1]
[10]
Ma G N, Wang D, Liu Z Y, et al.
An investigation on particle weakening in T6-treated SiC/Al-Zn-Mg-Cu Composites
[J]. Mater.Charact., 2019, 158: 109966
[本文引用: 2]
[11]
Ma G N, Wang D, Liu Z Y, et al.
Effect of hot pressing temperature on microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites
[J]. Acta Metall Sin, 2019, 55(10): 1319
DOI [本文引用: 1]
Particulate reinforced aluminum matrix composites have been widely used in industrial fields. In general, high strength aluminium alloys, such as 2024Al are employed to produce stronger composites. However, the composites with high strength Al-Zn-Mg-Cu alloys as the matrices are paid relative attentions. Therefore, the corresponding optimization for fabrication parameters has not been well understood. In the present work, SiC particles with volume fraction of 15% reinforced Al-7.5Zn-2.8Mg-1.7Cu (mass fraction, %) composites were fabricated using powder metallurgy (PM) technique at hot pressing temperatures of 500, 520, 540 and 560 ℃. TEM, EPMA and tensile test were used to study the effect of hot pressing temperature on the microstructure and tensile properties of SiC/Al-Zn-Mg-Cu composites. The measured densities indicated that all the composites were completely condensed, no pores were observed. Undissolved phase containing Mg and Cu segregated in matrix of the composites hot pressed at 500 and 520 ℃, resulting in instable tensile properties. With increasing hot pressing temperature to 540 ℃, Mg and Cu were uniformly distributed in the composites which exhibited the stable tensile properties. With further increasing temperature to 560 ℃, Mg segregated around SiC particles due to interface reaction. In this case, the content of MgZn2 phase was decreased, resulting in the reduction of tensile strength. HAADF-STEM and EDS analyses showed that the interface compounds were oxide of Mg and coarse MgZn2 phase.
馬國(guó)楠, 王 東, 劉振宇, 等.
熱壓燒結(jié)溫度對(duì)SiC/Al-Zn-Mg-Cu復(fù)合材料微觀(guān)結(jié)構(gòu)與力學(xué)性能的影響
[J]. 金屬學(xué)報(bào), 2019, 55(10): 1319
DOI [本文引用: 1]
利用粉末冶金法制備了含15%SiC (體積分?jǐn)?shù))的SiC/Al-7.5Zn-2.8Mg-1.7Cu (質(zhì)量分?jǐn)?shù),%)復(fù)合材料,采用TEM、EPMA和拉伸實(shí)驗(yàn)等分析測(cè)試手段,研究了熱壓燒結(jié)溫度(500~560 ℃)對(duì)復(fù)合材料微觀(guān)組織和力學(xué)性能的影響
結(jié)果表明,所選熱壓溫度下均可制備致密無(wú)孔洞的復(fù)合材料坯錠
熱壓溫度為500和520 ℃時(shí),SiC/Al界面反應(yīng)程度較輕,擠壓棒材經(jīng)T6熱處理后,Zn元素均勻分布于基體中,但存在的少量富Mg微米級(jí)難溶相使復(fù)合材料的力學(xué)性能產(chǎn)生較大波動(dòng)
當(dāng)熱壓溫度升高到540 ℃時(shí),富Mg難溶相尺寸明顯減小,元素分布變得更均勻,復(fù)合材料力學(xué)性能穩(wěn)定性明顯提升
當(dāng)熱壓溫度繼續(xù)升高到560 ℃時(shí),Mg元素開(kāi)始向SiC顆粒周?chē)?,界面反?yīng)更加嚴(yán)重,而且降低了基體中MgZn<sub>2</sub>的體積分?jǐn)?shù),使復(fù)合材料抗拉強(qiáng)度明顯下降
對(duì)560 ℃熱壓的復(fù)合材料進(jìn)行高角度環(huán)形暗場(chǎng)像和EDS分析,發(fā)現(xiàn)SiC/Al界面同時(shí)存在含Mg氧化物和粗大的MgZn<sub>2</sub>沉淀相
[12]
Canakci A, Arslan F, Yasar I.
Pre-treatment process of B4C particles to improve incorporation into molten AA2014 alloy
[J]. J. Mater. Sci., 2007, 42: 9536
DOIURL [本文引用: 1]
[13]
Esther I, Dinaharan I, Murugan N.
Microstructure and sliding wear characterization of submicron and nanometric boron carbide particulate reinforced AA2124 aluminum matrix composites prepared by stir casting
[J]. Mater. Res. Express., 2019(6): 0865i3
[本文引用: 1]
[14]
Li Y Z, Wang Q Z, Wang W G, et al.
Interfacial reaction mechanism between matrix and reinforcement in B4C/6061Al composites
[J]. Materials Chemistry and Physics, 2015, 154: 107
DOIURL [本文引用: 1]
[15]
Gao M Q, Chen Z N, Kang H J, et al.
Microstructural characteristics and mechanical behavior of B4Cp/6061Al composites synthesized at different hot-pressing temperatures
[J]. J. Mater. Sci. Technol., 2019, 35(8): 1523
DOIURL [本文引用: 1]
[16]
Sharma A, Tirumuruhan B, G Set al Muthuvel.
Optimization of process parameters of boron carbide-reinforced Al-Zn-Mg-Cu matrix composite produced by pressure assisted sintering
[J]. J. Mater. Eng. Perform., 2022, 31(1): 328
DOI [本文引用: 1]
[17]
Sharma A, Sai S K V, Mrinal D, et al.
Ballistic performance of functionally graded boroncarbide reinforced Al-Zn-Mg-Cu alloy
[J]. J. Mater. Sci. Technol., 2022, 18: 4042
[本文引用: 1]
[18]
Wu C D, Fang P, Luo G Q.
Effect of plasma activated sintering parameters on microstructure and mechanical properties of Al-7075/B4C composites
[J]. J. Alloys Compd., 2014, 615: 276
DOIURL [本文引用: 1]
[19]
Ye T K, Xu Y X, Ren J.
Effects of SiC particle size on mechanical properties of SiC particle reinforced aluminum metal matrix composite
[J]. Mat. Sci. Eng. A., 2019, 753: 146
DOIURL [本文引用: 1]
[20]
Viala J C, Bouix J.
Chemical reactivity of aluminium with boron carbide
[J]. J. Mater. Sci., 1997, 32: 4559
DOIURL [本文引用: 1]
[21]
Pyzik A J, Beaman D R.
Al-B-C phase development and effects on mechanical properties of B4C/Al derived composites
[J]. J Am. Ceram. Soc., 1995, 78(2): 305
DOIURL [本文引用: 1]
[22]
Li Y Z, Wang Q Z, Wang W G, et al.
Effect of interfacial reaction on age-hardening ability of B4C/6061Al composites
[J]. Mat. Sci. Eng. A., 2015, 620: 445
DOIURL [本文引用: 1]
[23]
Li Y, Deng Y L, Fan S T, et al.
An in-situ study on the dissolution of intermetallic compounds in the Al-Zn-Mg-Cu alloy
[J]. J. Alloys Compd., 2020, 829: 154612
DOIURL [本文引用: 1]
[24]
Sha G, Cerezo A.
Early-stage precipitation in Al-Zn-Mg-Cu alloy(7050)
[J]. Acta Mater., 2004, 52(15): 4503
DOIURL [本文引用: 1]
[25]
Curle U A, Cornish L A, Govender G.
Predicting yield strengths of Al-Zn-Mg-Cu-(Zr) aluminum alloys based on alloy composition or hardness
[J]. Mater.Des., 2016, 99: 211
[本文引用: 1]
[26]
Li G, Wang F F, Zheng R, et al.
Microstructural evolution and strengthening mechanism of Al alloy matrix composites by applied high pulsed electromagnetic field
[J]. Chin. J. Mater. Res., 2016, 30(10): 745
DOI [本文引用: 1]
Nanometer sized Al2O3 reinforced Al-Zn-Mg-Cu matrix composites were subjected to treatments in high pulsed magnetic field with different magnetic induced intensity 2T, 3T and 4T. The results demonstrate that the residual stress arrives to a minimum of -1MPa by an applied 3T pulsed magnetic field, which decreased by 102.4% compared to that of the original composite. The applied magnetic field can relax the long range distance stresses between areas with dense and sparse dislocations respectively; Meanwhile, the magnetic field increases the mobility of dislocations and accelerate the release velocity of internal stress, then the residual stress is, thereafter, lowered. The tensile strength increased with the enhancement of magnetic induced intensity. By 4T magnetic field the introduced mass factor, which is a combined parameter to represent the tensile strength and elongation, was enhanced by 12.7% compared to that of the original composite. The high dislocation density is beneficial to the dislocation induced strengthening. Besides, an other important reason lies in that the applied magnetic field may facilitate the formation of metastable η'(MgZn2) phase as the main precipitates, which somewhat substitute the common η (MgZn2) phase. Thereby, the increase of η'(MgZn2) can improve the strength and toughness of composites. Furthermore,based on the first principle the density of electron spin state is calculated, which corresponds to the bonds formation process. By 2T magnetic field treatment, the fractograph of the composite exhibits the characteristic of ductile fracture that corresponds to a higher elongation of 9.3%, which is 12% higher than that of the original composite.
李桂榮, 王芳芳, 鄭瑞, 等.
脈沖強(qiáng)磁場(chǎng)處理固態(tài)鋁基復(fù)合材料的力學(xué)性能和強(qiáng)韌化機(jī)制
[J]. 材料研究學(xué)報(bào), 2016, 30(10): 745
DOI [本文引用: 1]
在脈沖強(qiáng)磁場(chǎng)(2T、3T和4T)中對(duì)固態(tài)納米Al<sub>2</sub>O<sub>3</sub>顆粒增強(qiáng)Al-Zn-Mg-Cu基復(fù)合材料進(jìn)行磁場(chǎng)處理, 研究了磁場(chǎng)處理對(duì)復(fù)合材料的殘余應(yīng)力和拉伸性能的影響, 并分析了強(qiáng)化機(jī)制
結(jié)果表明: 在磁場(chǎng)強(qiáng)度B為3T時(shí)殘余應(yīng)力達(dá)到最小值(-1 MPa), 比磁場(chǎng)處理前初始態(tài)試樣的殘余應(yīng)力降低了102.4%
外加磁場(chǎng)降低了位錯(cuò)密集區(qū)和稀疏區(qū)間的長(zhǎng)程應(yīng)力
在B=4T時(shí)材料的質(zhì)量因數(shù)比磁場(chǎng)處理前初始態(tài)試樣提高12.7%, 位錯(cuò)密度的提高有助于發(fā)揮位錯(cuò)強(qiáng)化機(jī)制; 在磁場(chǎng)的作用下合金的析出相以非穩(wěn)態(tài)η'(MgZn<sub>2</sub>)相為主, 有助于材料強(qiáng)韌性的提高
基于第一性原理計(jì)算了在磁場(chǎng)作用下MgZn<sub>2</sub>相成鍵過(guò)程中的自旋態(tài)密度, 為η'相的析出提供了理論依據(jù)
在B=2T時(shí)材料拉伸斷口的特征主要表現(xiàn)為韌性斷裂, 對(duì)應(yīng)較高的延伸率9.3%, 比磁場(chǎng)處理前的初始態(tài)試樣提高了12%
[27]
Zou Y, Wu X D, Tang S B, et al.
Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios
[J]. J. Mater. Sci. Technol., 2021, 85: 106
DOI [本文引用: 1]
The effects of Zn/Mg ratios on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys aged at 150 °C have been investigated by using tensile tests, optical metallography, scanning electron microscopy, transmission electron microscopy and atom probe tomography analyses. With increasing Zn/Mg ratios, the ageing process is significantly accelerated and the time to peak ageing is reduced. T′ phase predominates in alloys of lower Zn/Mg ratios while η′ phase predominates in alloys with a Zn/Mg ratio over 2.86. Co-existence of T′ phase and η′ phase with a large number density is beneficial to the high strength of alloys. Such precipitates together with narrow precipitate free zones cause a brittle intergranular fracture. A strength model has been established to predict the co-strengthening effect of T′ phase and η′ phase in Al-Zn-Mg-Cu alloys, including the factors of the grain boundary, solid solution and precipitation.
[28]
Won Sung-Jae, Soa Hyeongsub, Kang Leeseung, et al.
Development of a high-strength Al-Zn-Mg-Cu-based alloy via multi-strengthening mechanisms
[J]. Scr. Mater, 2021, 205: 114216
DOIURL [本文引用: 1]
[29]
Preet M, Singh, John J.
Effects of heat treatment and reinforcement size on reinforcement fracture during tension testing of a SiCp discontinuously reinforced aluminum alloy
[J]. Metallurgical Transactions A., 1993, 24: 2531
DOIURL [本文引用: 1]
[30]
Suh Y S, Joshi S P, Ramesh K T.
An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites
[J]. Acta Mater., 2009, 57: 5848
DOIURL [本文引用: 1]
[31]
Xiang Z B, Nie J H, Wei S H, et al.
Effects of particle-matrix matching on strengthening mechanism of particle reinforced Al matrix composites
[J]. Chin. J. Mater. Res., 2015, 29(10): 744
DOI [本文引用: 1]
Al-based composites of 25% SiCp/6061Al and 25% Al2O3/6061Al were fabricated by powder metallurgy method, and then suffered from different solution-aging treatments to ensure the composites with desired strength. The effect of particle-matrix compatibility on the tensile property of the composites was investigated by tensile test and SEM observation. Results show that the low strength Al2O3 particles were not suitable to strengthening the high strength 6061Al matrix. The effect of particle-matrix compatibility on strengthening mechanism was discussed, and it is believed that the particle-matrix compatibility affects the composite property through the stress transfer mechanism. The relationships between particle-matrix compatibility with the particle fracture and composites yielding were revealed, It is obtained that particle cracking decreased as particle strength increase, and finally an expression to represent the particle-matrix compatibility was summed up.
向兆兵, 聶俊輝, 魏少華, 等.
增強(qiáng)顆粒與基體適配性對(duì)顆粒增強(qiáng)鋁基 復(fù)合材料強(qiáng)化機(jī)理的影響
[J]. 材料研究學(xué)報(bào), 2015, 29(10): 744
DOI [本文引用: 1]
用粉末冶金法制備了分別用Al<sub>2</sub>O<sub>3</sub>、SiC顆粒增強(qiáng)的顆粒體積分?jǐn)?shù)為25%的6061Al基復(fù)合材料, 在不同溫度對(duì)其進(jìn)行固溶-時(shí)效熱處理, 通過(guò)拉伸曲線(xiàn)分析和斷口SEM分析研究了增強(qiáng)顆粒與基體適配性對(duì)顆粒增強(qiáng)鋁基復(fù)合材料拉伸性能的影響
結(jié)果表明, 低強(qiáng)度Al<sub>2</sub>O<sub>3</sub>顆粒不適合用于增強(qiáng)高強(qiáng)度的6061Al基體; 研究了增強(qiáng)顆粒與基體適配性對(duì)顆粒增強(qiáng)鋁基復(fù)合材料強(qiáng)化機(jī)制的影響, 發(fā)現(xiàn)主要通過(guò)影響應(yīng)力傳遞機(jī)制來(lái)影響復(fù)合材料性能; 揭示了適配性與增強(qiáng)顆粒開(kāi)裂、復(fù)合材料屈服之間的關(guān)系, 得出增強(qiáng)顆粒相對(duì)于基體強(qiáng)度越高, 顆粒開(kāi)裂越少, 并總結(jié)了一種表示增強(qiáng)顆粒與基體適配性關(guān)系的方法
[32]
Kok M.
Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites
[J]. J.Mater.Process Technol., 2005, 161: 381
[本文引用: 1]
[33]
Yang Z Y, Fan J Z, Liu Y Q, et al.
Effect of the particle size and matrix strength on strengthening and damage process of the particle reinforced metal matrix composites
[J]. Materials., 2021, 14: 675
DOIURL [本文引用: 1]
Roles of the particle, strengthening, and weakening during deformation of the particle reinforced metal matrix composite, were studied using in situ technique. Composites with three different strengths Al-Cu-Mg alloy matrices reinforced by three sizes SiC particles were manufactured and subjected to in situ tensile testing. Based on in situ observation, damage process, fraction and size distribution of the cracked particles were collected to investigate the behavior of the particle during composite deformation. The presence of the particle strengthens the composite, while the particle cracking under high load weakens the composite. This strengthening to weakening transformation is controlled by the damage process of the particle and decided by the particle strength, size distribution, and the matrix flow behavior together. With a proper match of the particle and matrix, an effective strengthening can be obtained. Finally, the effective match range of the particle and the matrix was defined as a function of the particle size and the matrix strength.
[34]
Guo X L, Guo Q, Nie J H, et al.
Particle size effect on the interfacial properties of SiC particle-reinforced Al-Cu-Mg composites
[J]. Mat. Sci. Eng. A. Struct., 2018, 711: 643
DOIURL [本文引用: 1]
[35]
Xiao B L, Bi J, Zhao M J, et al.
Effects of SiCp size on tensile property of aluminum matrix composites fabricated by powder metallurgical method
[J]. Acta.Metall Sin., 2002, 38(9): 1006
肖伯律, 畢 敬, 趙明久,
等.
碳化硅尺寸對(duì)鋁基復(fù)合材料拉伸性能和斷裂機(jī)制的影響
[J]. 金屬學(xué)報(bào), 2002, 38(9): 1006.
對(duì)粉末冶金法制備的不同尺寸SiCp增強(qiáng)鋁基復(fù)合材料的拉伸性能進(jìn)行了研究.結(jié)果表明,小尺寸SiCp(<7 μm)復(fù)合材料斷裂以界面處基體撕裂為主,強(qiáng)度較高.大尺寸SiCp增強(qiáng)復(fù)合材料斷裂以SiCp解理為主,強(qiáng)度較低,但塑性比小尺寸顆粒增強(qiáng)復(fù)合材料要高體積分?jǐn)?shù)為1 7%,尺寸為7μm顆粒復(fù)合材料拉伸性能最好.
[36]
Jin P, Liu Y, Lin S, et al.
Effects of SiC particle size on tensile property and fracture behavior on partile reinforced aluminum metal matrix composites
[J]. Chin. J. Mater. Res., 2009, 23(2): 211
[本文引用: 1]
金 鵬, 劉 越, 李 曙,
等.
碳化硅增強(qiáng)鋁基復(fù)合材料的力學(xué)性能和斷裂機(jī)制
[J]. 材料研究學(xué)報(bào), 2009, 23(2): 211
[本文引用: 1]
[37]
Ma G N, Wang D, Xiao B L.
Efect of particle size on mechanical properties and fracture behaviors of age-hardening SiC/Al-Zn-Mg-Cu composites
[J]. Acta. Metall. Sin., 2021, 34: 1447
DOI [本文引用: 1]
[38]
Liu R X, Wu C D, Zhang J, et al.
Microstructure and mechanical behaviors of the ultrafine grainedAA7075/B4C composites synthesized via one-step consolidation
[J]. J. Alloys Compd., 2018, 748: 737
DOIURL [本文引用: 1]
[39]
Wen H, Topping T D, Isheim D, et al.
Strengthening mechanisms in a high-strength bulk nanostructured Cu-Zn-Al alloy processed via cryomilling and spark plasma sintering
[J]. Acta Mater., 2013, 61(8): 2769
DOIURL [本文引用: 1]
[40]
Bembalge O B, Panigrahi S K.
Development and strengthening mechanisms of bulk ultrafine grained AA6063/SiC composite sheets with varying reinforcement size ranging from nano to micro domain
[J]. J. Alloys Compd., 2018, 766: 355
DOIURL [本文引用: 1]
The current state and trend of metal matrix composites
1
2010
聲明:
“增強(qiáng)顆粒尺寸對(duì)B4C/Al-Zn-Mg-Cu復(fù)合材料微觀(guān)組織及力學(xué)性能的影響” 該技術(shù)專(zhuān)利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專(zhuān)利(論文)的發(fā)明人(作者)