久久看看永久视频,日日狠狠久久偷偷色,亚洲中文字幕在线网,午夜福利院中文字幕

  • <dfn id="vuqxj"><td id="vuqxj"></td></dfn>
  • <dfn id="vuqxj"></dfn>

    1. <div id="vuqxj"><option id="vuqxj"><b id="vuqxj"></b></option></div>
    2. 合肥金星智控科技股份有限公司
      宣傳

      位置:中冶有色 >

      有色技術(shù)頻道 >

      > 合金材料技術(shù)

      > C含量對(duì)VCoNi中熵合金微觀組織和性能的影響

      C含量對(duì)VCoNi中熵合金微觀組織和性能的影響

      860   編輯:中冶有色技術(shù)網(wǎng)   來(lái)源:幸定琴,涂堅(jiān),羅森,周志明  
      2024-04-17 10:33:25
      傳統(tǒng)合金由一種基本元素和少量元素組成 隨著現(xiàn)代工業(yè)的發(fā)展,新型的“多主元合金”(Multi-principal element alloys, MPEAs)應(yīng)運(yùn)而生[1~4] 多主元合金由三至四種元素按等原子比或近等原子比生成中熵合金(Medium entropy alloy, MEA),五種及以上主要元素生成的合金稱為高熵合金(High entropy alloy, HEA)[5] 多主元合金具有高熵效應(yīng)、緩慢擴(kuò)散效應(yīng)、晶格畸變效應(yīng)和雞尾酒效應(yīng)[1, 2],因此多主元合金在高溫、強(qiáng)輻照、高摩擦以及強(qiáng)腐蝕等極端領(lǐng)域有廣闊的應(yīng)用前景[6~13]

      多主元合金中不同組元原子半徑的差異產(chǎn)生嚴(yán)重的晶格畸變,阻礙位錯(cuò)的運(yùn)動(dòng) 因此,晶格畸變是多主元合金固溶強(qiáng)化的關(guān)鍵因素[14~16] VCoNi中熵合金具有典型的晶格畸變效應(yīng),其抗拉強(qiáng)度接近1 GPa,伸長(zhǎng)率約為55%,實(shí)現(xiàn)了優(yōu)異的強(qiáng)韌化性能協(xié)調(diào)[16, 17] 其原因是,V原子顯著增大了原子鍵距的波動(dòng),嚴(yán)重的晶格畸變使位錯(cuò)移動(dòng)需要的晶格摩擦應(yīng)力顯著提高[16]

      與傳統(tǒng)合金類(lèi)似,添加間隙原子可產(chǎn)生間隙強(qiáng)化和第二相強(qiáng)化[18, 19] 碳(C)是應(yīng)用最多的間隙原子之一 在CoCrNi中熵合金中加入C(0.75%,原子分?jǐn)?shù)),可使其強(qiáng)度提高且保持著75%左右的延伸率[20] 其原因是,C產(chǎn)生的間隙固溶強(qiáng)化提高了合金層錯(cuò)能,從而延緩孿晶的產(chǎn)生并減小孿晶層的厚度 這些細(xì)小的孿晶組織,可延緩塑性失穩(wěn)并顯著提高合金的加工硬化能力 在FeCoNiCrMn高熵合金中加入少量的C(0.1%,原子分?jǐn)?shù)),可使其在變形過(guò)程中產(chǎn)生更高密度的位錯(cuò)和后續(xù)退火中孿晶界的比例顯著降低,因?yàn)镃原子使合金的層錯(cuò)能增大[21] Fe49.5Mn30Co10Cr10C0.5高熵合金的低溫(77 K)抗拉強(qiáng)度(1300 MPa)[22]比室溫顯著提高,且具有出色的延伸率(50%) 其原因是,C原子產(chǎn)生的間隙固溶強(qiáng)化和合金層錯(cuò)能的降低提高了晶格摩擦力,使位錯(cuò)滑移方式由波浪滑移轉(zhuǎn)變?yōu)槠矫婊?

      在合金的變形和熱處理過(guò)程中發(fā)生的織構(gòu)變化使樣品產(chǎn)生各向異性,因此研究其織構(gòu)演變至關(guān)重要 例如,冷軋?zhí)幚砗蟮腃oCrNi中熵合金產(chǎn)生以Brass為主的形變織構(gòu),而熱軋樣品則產(chǎn)生明顯的α取向且Brass織構(gòu)強(qiáng)度降低;熱處理后CoCrNi合金中的再結(jié)晶晶粒仍保留大量的形變織構(gòu)組分,即以α取向?yàn)橹鞯脑俳Y(jié)晶織構(gòu)[23] Bhattacharjee等[24]研究了CoCrFeMnNi合金冷軋和退火后的織構(gòu)演變,發(fā)現(xiàn)冷軋90%后出現(xiàn)強(qiáng)Brass型織構(gòu),而再結(jié)晶織構(gòu)中保留了Brass變形織構(gòu)組分,但是新形成的S織構(gòu)比Brass織構(gòu)更強(qiáng)

      對(duì)于力學(xué)性能出色的多主元合金,其在摩擦服役條件下的服役性能受到極大的關(guān)注 C原子摻雜使CoCrFeMnNiC x 合金的摩擦磨損性能提高[25],因?yàn)樯傻挠睲7C3碳化物(M主要為Cr、Fe和Mn)使磨損表面的分層行為減弱 用激光熔覆技術(shù)在45鋼表面制備的CoCrFeMnNiC x 改性層[26],隨著C含量由0提高到0.09涂層的摩擦因數(shù)降低而耐磨性能提高 其原因是,析出的硬質(zhì)碳化物M23C6保護(hù)了磨損表面 在Fe50Mn30Co10Cr10基體中添加B4C陶瓷顆粒使其具有比基體更高的摩擦磨損能力[27],因?yàn)锽4C顆粒在基體材料中產(chǎn)生彌散強(qiáng)化和細(xì)晶強(qiáng)化,使磨損率和摩擦系數(shù)顯著降低 鑒于此,本文在VCoNi中熵合金中添加不同含量的C原子制備(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)中熵合金,系統(tǒng)研究C含量對(duì)VCoNi中熵合金的微觀組織演變、力學(xué)性能以及摩擦磨損性能的影響

      1 實(shí)驗(yàn)方法

      實(shí)驗(yàn)用原料為高純粉末V、Co、Ni和C(其純度均高于99.9%) 以氬氣作為保護(hù)氣體,用真空非自耗電弧爐熔煉(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)樣品 根據(jù)添加C原子的比例,將樣品命名為CX 先將金屬粉末充分混合,然后壓成直徑為10 mm、高約為10 mm的圓柱體 將圓柱體放入真空非自耗電弧熔煉爐的水冷銅坩堝中進(jìn)行熔煉,為了保證樣品的均勻性,每個(gè)樣品至少翻轉(zhuǎn)重熔4次,得到鑄態(tài)樣品 隨后將鑄態(tài)樣品在1000℃保溫2 h后進(jìn)行熱壓縮變形(變形量45%),再將熱壓態(tài)樣品在1000℃保溫2 h后水淬,得到均勻態(tài)樣品

      用電火花線切割機(jī)將均勻態(tài)樣品切片,然后進(jìn)行室溫軋制變形(變形量70%),并將其在1000℃保溫1 min后水淬,得到再結(jié)晶態(tài)樣品

      使用配備有EDS分析儀和EBSD探頭的ZEISS SIGMA HD場(chǎng)發(fā)射掃描電鏡(SEM)觀察樣品的微觀組織及元素分布 先用砂紙將SEM樣品水磨至3000#,再進(jìn)行電解拋光 電解拋光液的成分為高氯酸和乙醇(體積比1∶9),拋光溫度約為-30℃ 電解拋光時(shí)將樣品接直流穩(wěn)壓電源的陽(yáng)極,用不銹鋼作陰極,在電壓為20 V、電流為0.25 A條件下電化學(xué)拋光約50 s 用Channel 5后處理軟件分析EBSD數(shù)據(jù) 用萬(wàn)能拉伸實(shí)驗(yàn)機(jī)測(cè)試室溫拉伸性能,拉伸應(yīng)變速率為3 mm/min,試樣標(biāo)距長(zhǎng)度45 mm,寬10 mm和厚2 mm,其形狀似“狗骨狀” 使用圓盤(pán)式磨損試驗(yàn)機(jī)進(jìn)行室溫摩擦磨損實(shí)驗(yàn),試樣的長(zhǎng)度為20 mm、寬為10 mm、厚為2 mm,使用直徑為6 mm的Al2O3球作為摩擦副,旋轉(zhuǎn)半徑為3 mm,轉(zhuǎn)動(dòng)速度為200 r/min,載荷為10 N,測(cè)試時(shí)長(zhǎng)為30 min 用Bruker白光干涉儀測(cè)量摩擦磨損樣品磨痕的三維形貌,使用Vision 64軟件處理干涉儀數(shù)據(jù)得到磨損三維形貌和磨損體積

      使用Thermo-Calc軟件(Version 2020a)進(jìn)行CALPHAD計(jì)算并根據(jù)熱力學(xué)數(shù)據(jù)庫(kù)TCHEA 4[28],繪制出(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)樣品的相含量隨溫度變化,以分析其主要相結(jié)構(gòu)

      2 實(shí)驗(yàn)結(jié)果

      圖1給出了(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的相含量隨溫度變化 x=0時(shí)(圖1a),高溫相區(qū)(870~1253℃)的結(jié)構(gòu)為單相FCC,在低溫相區(qū)(600~869℃)出現(xiàn)金屬間化合物Co3V、D022(Al3Ti型)和σ相 x=0.1時(shí)(圖1b),合金的熔點(diǎn)略有降低(1212℃),σ相的析出溫度升高(1120℃),在1238℃開(kāi)始析出少量HCP相 x=0.4時(shí)(圖1c),合金的熔點(diǎn)提高(1230℃),σ相的析出溫度降低(940℃),HCP相的析出溫度升高(1330℃)且其含量提高 x=1時(shí)(圖1d),合金的熔點(diǎn)繼續(xù)提高(1270℃),在溫度區(qū)間1460~1500℃析出FCC相,且隨著溫度的降低出現(xiàn)HCP相(1472℃)、σ相(787℃) x=2.8時(shí)(圖1e),合金的熔點(diǎn)提高到1343℃,σ相消失,在1290℃析出M3C2型(M=V、Co)碳化物,F(xiàn)CC相區(qū)擴(kuò)寬(1269~1500℃),HCP相區(qū)變窄(786~1080℃) 這表明,隨著含C含量的提高,金的熔點(diǎn)呈現(xiàn)升高的趨勢(shì),HCP相的含量先提高后降低,σ相的含量逐漸降低

      圖1



      圖1(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的相含量隨溫度的變化

      Fig.1Phases fraction as function of temperature for (VCoNi)100-x C x (x=0, 0.1, 0.4, 1 and 2.8) samples (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8

      圖2給出了均勻態(tài)(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)樣品的SEM形貌 C0(圖2a)、C0.1(圖2b)和C0.4樣品(圖2c)的晶粒均呈等軸晶形態(tài),退火孿晶呈板條狀,平均晶粒尺寸分別為40 μm(圖2a),32 μm(圖2b)和21 μm(圖2c) C1樣品(圖2d)的晶粒呈等軸晶和胞狀晶,平均晶粒尺寸為28 μm,在等軸晶中也觀察到退火孿晶 C2.8樣品(圖2e)的晶粒呈胞狀形態(tài),沒(méi)有退火孿晶,平均晶粒尺寸為49 μm 同時(shí),隨著C含量的提高,均能觀察到不同形態(tài)的第二相顆粒;C0.1、C0.4和C1樣品中的第二相以棒狀和顆粒狀形態(tài)為主;而C2.8樣品中的第二相則呈條狀、棒狀和顆粒狀

      圖2



      圖2均勻態(tài)(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的SEM照片

      Fig.2SEM images of as-homogenized samples: (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8

      圖3給出了均勻態(tài)(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)樣品的EDS面掃分布圖 圖3a~b表明,C0和C0.1樣品中的V、Co和Ni原子分布均勻 圖3c~e表明,C0.4、C1和C2.8樣品中的V和C原子明顯富集,且主要集中在第二相,為釩碳化合物

      圖3



      圖3均勻態(tài)(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的EDS面掃分布

      Fig.3EDS element distribution of as-homogenized samples (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8

      圖4給出了均勻態(tài)(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的EBSD圖 圖4a2~d2表明,C0、C0.1和C0.4均為FCC單相結(jié)構(gòu),而C1和C2.8樣品為FCC+HCP雙相結(jié)構(gòu) 在C0、C0.1和C0.4樣品中出現(xiàn)大量的(60°<111>)退火孿晶(圖4a3~c3) C1樣品中的退火孿晶急劇減少(圖4d3);胞狀晶內(nèi)部出現(xiàn)大量的小角度晶界,表明胞狀晶內(nèi)存在較高的應(yīng)力 C2.8樣品中的退火孿晶基本消失,在胞狀晶區(qū)也能出現(xiàn)大量的小角度晶界(圖4e3)

      圖4



      圖4均勻態(tài)(VCoNi)100-x C x (x=0, 0.1, 0.4, 1和2.8)的EBSD圖

      Fig.4EBSD of as-homogenized samples (VCoNi)100-x C x (x=0, 0.1, 0.4, 1 and 2.8) (a~e). inverse pole figure (a1~e1); phase maps (a2~e2) and grains boundary maps(a3~e3)

      圖5給出了均勻態(tài)(VCoNi)100-x C x (x=0,0.1,0.4,1和2.8)的取向分布函數(shù)截面圖,ODF圖以φ2=45°、65°和90°截面圖顯示,其主要織構(gòu)成分的體積分?jǐn)?shù)在圖6中給出 圖5a表明,C0樣品含有G/B織構(gòu)組分(9.24%)和Cu織構(gòu)組分(10.4%) 圖5b表明,C0.1樣品中的Brass織構(gòu)的體積分?jǐn)?shù)明顯增大(12.7%)、S織構(gòu)組分稍有增加(7.88%),而其他組分有所減少 圖5c表明,C0.4樣品中的S織構(gòu)大幅增強(qiáng)(13.7%),表現(xiàn)出以Brass和G/B織構(gòu)組分為主的α取向線特征 圖5a~c表明,隨著C含量的提高,均勻態(tài)樣品的織構(gòu)逐漸向α取向線上聚集(即取向線φ1=0°→90°、φ=45°、φ2=90°),但是強(qiáng)度降低(從6.6 mrd降至2.36 mrd) 圖5d~e表明,C1和C2.4樣品中未出現(xiàn)典型織構(gòu)類(lèi)型

      圖5



      圖5均勻態(tài)(VCoNi)100-x C x (x=0, 0.1, 0.4, 1和2.8)的ODF圖(φ2=45°、65°和90°截面)

      Fig.5φ2=45°, 65° and 90° sections of ODF for the as-homogenized samples (a) C0; (b) C0.1; (c) C0.4; (d) C1; (e) C2.8

      圖6



      圖6均勻態(tài)樣品中主要織構(gòu)組分的體積分?jǐn)?shù)隨C含量的變化

      Fig.6Volume fractions of main texture components in as-homogenized samples with different C contents

      圖7給出了再結(jié)晶態(tài)(VCoNi)100-x C x (x=0,0.1和0.4)樣品的SEM形貌(C1和C2.8樣品因在熱壓縮過(guò)程中提前斷裂,不適合制備再結(jié)晶樣品) 可以看出,再結(jié)晶態(tài)樣品的晶粒形態(tài)均呈等軸狀,出現(xiàn)大量的板條組織,其平均晶粒尺寸分別約為5.02 μm(圖7a)、4.79 μm(圖7b)和4.22 μm(圖7c) 隨著C含量的提高,顯著析出了第二相顆粒 圖8給出了再結(jié)晶態(tài)(VCoNi)100-x C x (x=0,0.1和0.4)樣品的EBSD圖 圖8a2~c2(相圖)表明,再結(jié)晶態(tài)樣品均呈FCC單相結(jié)構(gòu),圖中的白色區(qū)域?yàn)榈诙嗟奈恢?在圖8a3~c3(晶界圖)中可觀察到高比例的退火孿晶(60°<111>),其比例分別為46.3%、59.1%和55.2%

      圖7



      圖7再結(jié)晶態(tài)(VCoNi)100-x C x (x=0, 0.1和0.4)的SEM照片

      Fig.7SEM images of microstructure for the as-recrystallized samples (a) C0; (b) C0.1;(c) C0.4

      圖8



      圖8再結(jié)晶態(tài)(VCoNi)100-x C x (x=0, 0.1和0.4)的EBSD圖

      Fig.8EBSD maps of as-recrystallized (VCoNi)100-x C x (x=0, 0.1 and 0.4) samples in (a~c), respectively (a1~c1) IPF maps; (a2~c2) phase maps; (a3~c3) GB maps

      圖9給出了(VCoNi)100-x C x (x=0,0.1和0.4)再結(jié)晶樣品在φ2=45°、60°和90°截面取向分布函數(shù)圖 φ2=90°圖顯示,三種樣品的織構(gòu)均在α線上聚集,織構(gòu)最強(qiáng)點(diǎn)均在α取向線上 φ2=45°圖顯示,樣品中出現(xiàn)明顯Cu織構(gòu)組分 根據(jù)φ2=65°織構(gòu)圖,可得到樣品均存在一定量的S織構(gòu) 圖10統(tǒng)計(jì)了再結(jié)晶態(tài)樣品主要織構(gòu)組分的體積分?jǐn)?shù) 結(jié)果表明,C0樣品中的Brass和G/B為體積分?jǐn)?shù)最高的織構(gòu)組分,其比例分別為16.2%和16%,S織構(gòu)組分占14.2% C0.1樣品的G/B和Cu織構(gòu)組分增強(qiáng),其體積分?jǐn)?shù)分別為18.4%和14.3% C0.4樣品的α取向線上各組分的體積分?jǐn)?shù)都減小,Cu和S織構(gòu)組分減小而隨機(jī)織構(gòu)增強(qiáng)

      圖9



      圖9再結(jié)晶態(tài)(VCoNi)100-x C x (x=0, 0.1和0.4)的ODF圖(φ2=45°、65°和90°截面)

      Fig.9φ2=45°, 65° and 90° sections of the ODFs (determined by EBSD) of as-recrystallized C0 sample in (a), C0.1 sample in (b), C0.4 sample in (c)

      圖10



      圖10再結(jié)晶態(tài)樣品中主要織構(gòu)組分的體積分?jǐn)?shù)隨C含量的變化

      Fig.10Volume fractions of main texture components in as-recrystallized samples with different C contents

      圖11a給出了再結(jié)晶態(tài)(VCoNi)100-x C x (x=0,0.1和0.4)樣品的室溫拉伸曲線,表1列出了屈服強(qiáng)度、抗拉強(qiáng)度和延伸率的具體數(shù)值,其中C0.1表現(xiàn)出最優(yōu)的強(qiáng)韌化性能 圖11b表明,樣品的拉伸曲線均呈現(xiàn)出典型的三段式加工硬化率 第一階段,加工硬化率下降,塑性變形由位錯(cuò)滑移主導(dǎo),動(dòng)態(tài)回復(fù)引起的位錯(cuò)塞積速率降低,使加工硬化率減小 此時(shí),C0.1和C0.4樣品的加工硬化率略高于C0樣品 第二階段,加工硬化率的下降減緩,三種樣品呈現(xiàn)出近似的加工硬化率 第三階段的加工硬化率曲線均隨著真應(yīng)變的增加而急劇下降,直至斷裂

      圖11



      圖11再結(jié)晶態(tài)(VCoNi)100-x C x (x=0, 0.1和0.4)的室溫拉伸曲線和斷口形貌

      Fig.11representative tensile engineering stress-strain curves(a); corresponding strain-hardening rate curves (b); fracture surfaces of as-recrystallized C0, C0.1 and C0.4 samples are shown in (c), (d) and (e)

      Table 1

      表1

      表1(VCoNi)100-x C x 中熵合金的屈服強(qiáng)度、抗拉強(qiáng)度以及延伸率

      Table 1Yield strength, ultimate tensile strength and elongation of (VCoNi)100-x C x medium entropy alloy



      Yield Strength

      / MPa



      Ultimate tensile strength

      / MPa



      Elongation

      / %

      C0 528.30 1003.29 54.23
      C0.1 744.62 1193.86 39.25
      C0.4 686.68 1130.22 39.37


      圖11c1~f1表明,樣品均出現(xiàn)明顯的縮頸現(xiàn)象且斷口形貌均由分布均勻的韌窩組成,為典型的韌性斷裂 圖11c表明,C0樣品的斷口有大量的韌窩,其尺寸大且比較深,表明其具有較好的塑性 而含C樣品斷口的形貌發(fā)生了變化:第一,韌窩的深度和尺寸減小(圖11c3~e3);第二,斷口的部分區(qū)域出現(xiàn)了解理小平面(圖11d2~e2,黑色箭頭);第三,在C0.1樣品的韌窩中心可觀察到第二相顆粒(圖11d3~e3,紅色區(qū)域) 由此可見(jiàn),樣品斷口形貌的特征與其拉伸力學(xué)性能匹配,韌窩深度和尺寸的減小以及解理小平面的出現(xiàn),都意味著塑性的降低

      圖12給出了再結(jié)晶態(tài)(VCoNi)100-x C x (x=0,0.1和0.4)樣品在干摩擦條件下的摩擦磨損性能和磨痕形貌 圖12a(摩擦系數(shù)曲線)表明,所有曲線都顯示出類(lèi)似的兩階段(磨合和穩(wěn)態(tài))摩擦行為 在第一次磨合階段,由于磨損表面的損傷和接觸面積的增大,摩擦曲線很快到達(dá)最高點(diǎn)然后迅速下降,接著摩擦系數(shù)隨著滑動(dòng)時(shí)間的增加而逐漸增大 圖12a顯示出C0.1樣品摩擦曲線很快進(jìn)入平直階段(約2.8 min),表明該樣品很快進(jìn)入穩(wěn)定摩擦階段,而C0和C0.4樣品則需要較長(zhǎng)的磨合期(分別約3.7和4.5 min)才能進(jìn)入穩(wěn)定摩擦階段 圖12b表明,添加C原子的VCoNi合金,其摩擦系數(shù)的變化趨勢(shì)沒(méi)有明顯的差異,但是其平均摩擦系數(shù)增大(穩(wěn)定期)而磨損率降低 三維磨損表面的形貌(圖12d1~f1)表明,C0.1和C0.4樣品的磨痕寬度比C0樣品的小 從磨痕中心區(qū)域的截面二維輪廓圖(圖12c)可見(jiàn),磨痕寬度分別為1.006 mm(C0樣品)、0.986 mm(C0.1樣品)和0.911 mm(C0.4樣品),磨痕平均深度分別為6.482 μm(C0樣品)、5.482 μm(C0.1樣品)和5.587 μm(C0.4樣品) 這表明,添加C原子使VCoNi中熵合金的耐磨性能提高

      圖12



      圖12再結(jié)晶態(tài)(VCoNi)100-x C x (x=0, 0.1和0.4)的摩擦磨損性能和磨痕形貌

      Fig.12Real time friction coefficient (a); average friction coefficient and wear rate (b); wear scar profile (c); wear scar morphology of as-recrystallized C0 sample (d), C0.1 sample (e) and C0.4 sample (f)

      圖12d~f(磨痕形貌)表明,三種再結(jié)晶態(tài)樣品的磨損表面均由犁溝和磨屑組成 圖12d2~d3表明,C0樣品的磨痕分為黑色氧化區(qū)和灰色未氧化區(qū),磨痕表面有明顯的與滑動(dòng)方向相同的犁溝型劃痕以及在部分區(qū)域出現(xiàn)一些黑色大塊氧化膜、細(xì)小的麻點(diǎn)以及小型的魚(yú)鱗片狀碎片 這表明,基體樣品的磨損機(jī)制屬于氧化磨損、磨粒磨損和粘著磨損 圖12e2表明,C0.1樣品表面的犁溝型劃痕變淺,磨粒磨損的作用減弱;而磨痕表面黑色區(qū)域增大(圖12e3),樣品磨損產(chǎn)生的氧化增加,魚(yú)鱗片狀碎片明顯增多,表明氧化磨損和粘著磨損的作用加強(qiáng) 由此可見(jiàn),C0.1樣品的磨損機(jī)制為磨粒磨損、氧化磨損和粘著磨損 圖12f表明,C0.4樣品的磨痕表面形貌與C0.1樣品基本相同,但是黑色區(qū)域增大和魚(yú)鱗片狀碎片明顯增加(圖12f3),表明C0.4樣品的磨損機(jī)制仍為磨粒磨損、氧化磨損和粘著磨損

      3 討論

      添加不同含量的C影響VCoNi合金的微觀組織 第一,C0、C0.1和C0.4均勻態(tài)樣品中(圖2a~c)的晶粒形態(tài)為等軸晶組織和板條狀的退火孿晶;而C1均勻態(tài)樣品中(圖2d)的晶粒形態(tài)為胞狀晶,C2.8樣品中(圖2e)的晶粒形態(tài)為胞狀晶 生成胞狀晶的原因是,添加過(guò)多的C原子導(dǎo)致HCP相的生成(圖1) 第二,隨著C含量的提高,V和C原子明顯富集(圖3) 其原因是,在快速冷卻過(guò)程中C和V極強(qiáng)的親和力[29]使其極易生成釩碳化合物析出相 同時(shí),隨著C含量的提高,釩碳化合物增加 第三,含C再結(jié)晶態(tài)樣品的晶粒發(fā)生了細(xì)化,主要與第二相有關(guān) 在退火過(guò)程中第二相對(duì)晶界的釘扎抑制了再結(jié)晶晶粒的長(zhǎng)大[30]

      含C再結(jié)晶樣品的屈服強(qiáng)度和抗拉強(qiáng)度均提高(圖11a,b),而塑性略有降低 其主要原因是:第一,在VCoNi固溶體系中的C提供了間隙強(qiáng)化 第二,部分在晶界處析出的第二相使晶界界面能降低,降低了晶粒長(zhǎng)大驅(qū)動(dòng)力[31],導(dǎo)致晶粒細(xì)化(圖8a1~c1)而產(chǎn)生了細(xì)晶強(qiáng)化 第三,晶界處C原子的偏聚引起晶界內(nèi)聚力增大,沿晶斷裂分?jǐn)?shù)的減小有助于穩(wěn)定韌性[32],從而使含C樣品斷口的形貌仍舊以韌窩形貌為主(圖11c~e) 因此,C0.1和C0.4樣品的屈服強(qiáng)度和抗拉強(qiáng)度顯著提高 但是,C含量為0.4的樣品其屈服強(qiáng)度和抗拉強(qiáng)度呈下降趨勢(shì),表明再結(jié)晶態(tài)C0.1樣品中第二相的形態(tài)和尺寸均已達(dá)到最佳,從而使樣品具有優(yōu)異的強(qiáng)韌化綜合力學(xué)性能

      添加C原子樣品的摩擦磨損能力更高,可歸因于兩個(gè)方面的原因 第一,含C樣品在晶界處析出的硬質(zhì)釩碳化合物,提高了樣品的硬度從而增強(qiáng)了粘著磨損行為 第二,頻繁的氧化磨損使含C樣品表面在高速摩擦過(guò)程中迅速氧化,生成的氧化物黏著在摩擦表面 時(shí)間越長(zhǎng)則氧化層越厚,產(chǎn)生的潤(rùn)滑作用降低了樣品的磨損率,從而使樣品的耐磨性能提高

      4 結(jié)論

      (1) x=0~1的(VCoNi)100-x C x 熵合金均勻態(tài)樣品中的晶粒形態(tài)為等軸晶,且出現(xiàn)退火孿晶,隨著C含量的提高,晶粒尺寸減小,呈顆粒狀的第二相的含量提高;在x≥1的樣品中出現(xiàn)了粗大的胞晶,第二相呈現(xiàn)多形態(tài)特征,退火孿晶減少 再結(jié)晶態(tài)樣品中晶粒的形態(tài)均呈等軸晶狀,隨著C含量的提高,晶粒尺寸減小,第二相的含量提高

      (2) 均勻態(tài)C0樣品以G/B和Cu織構(gòu)為主,C0.1樣品Brass織構(gòu)的體積分?jǐn)?shù)明顯增大,C0.4樣品具有以Brass和G/B織構(gòu)組分為主的α取向線特征,在C1和C2.4樣品中未出現(xiàn)典型織構(gòu)類(lèi)型 再結(jié)晶態(tài)樣品均表現(xiàn)出在α線上聚集,且織構(gòu)最強(qiáng)點(diǎn)均在α取向線上

      (3) C0.1再結(jié)晶態(tài)樣品具有最優(yōu)的強(qiáng)韌化性能,因?yàn)檫m量的C原子使第二相的形態(tài)和尺寸均達(dá)到最佳,實(shí)現(xiàn)了細(xì)晶強(qiáng)化、間隙強(qiáng)化和第二相強(qiáng)化

      (4) 含C原子的再結(jié)晶樣品的摩擦磨損性能提高,因?yàn)镃原子生成的釩碳化合物增強(qiáng)了粘著磨損和氧化磨損,減弱了磨粒磨損,生成的氧化層減少了樣品的磨損

      參考文獻(xiàn)

      View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子

      [1]

      Tsai M H, Yeh J W.

      High-entropy alloys: a critical review

      [J]. Mater. Res. Lett., 2014, 2(3): 107

      DOIURL [本文引用: 2]

      [2]

      Miracle D B, Senkov O N.

      A critical review of high entropy alloys and related concepts

      [J]. Acta Mater., 2017, 122: 448

      DOIURL [本文引用: 1]

      [3]

      Yeh J W, Chen S K, Lin S J, et al.

      Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes

      [J]. Adv. Eng. Mater., 2004, 6(5): 299

      DOIURL

      [4]

      Cantor B, Chang I T H, Knight P, et al.

      Microstructural development in equiatomic multicomponent alloys

      [J]. Mat. Sci. Eng. A-Struct., 2004, 375: 213

      [本文引用: 1]

      [5]

      Zhang Y, Zuo T T, Tang Z, et al.

      Microstructures and properties of high-entropy alloys

      [J]. Prog. Mater. Sci., 2014, 61: 1

      DOIURL [本文引用: 1]

      [6]

      Lin Q, Liu J, An X, et al.

      Cryogenic-deformation-induced phase transformation in an FeCoCrNi high-entropy alloy

      [J], Mater. Res. Lett., 2018(6): 236

      [本文引用: 1]

      [7]

      Yang T, Guo W, Poplawsky J D, et al.

      Structural damage and phase stability of Al0.3CoCrFeNi high entropy alloy under high temperature ion irradiation

      [J], Acta Mater., 2020(188): 1

      [8]

      Schneider M, George E P, Manescau T J, et al.

      Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy

      [J]. Int. J. Plast., 2020(124): 155

      [9]

      Nam S, Kim C, Kim Y M.

      Recent studies of the lasercladding of high entropy alloys

      [J]. J. Weld. & Join., 2017, 35(4): 58

      [10]

      Agustianingrum M P, Park N, Yoshida S, et al.

      Effect of aluminum addition on solid solution strengthening in CoCrNi medium-entropy alloy

      [J]. J. Alloy Compd., 2019(781): 866

      [11]

      Senkov O N, Wilks G B, Scott J M, et al.

      Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys

      [J]. Intermetallics, 2011, 19(5): 698

      DOIURL

      [12]

      Lu C, Niu L, Chen N, et al.

      Enhancing radiation tolerance by controlling defect mobility and migration pathways in multicomponent single-phase alloys

      [J]. Nat. Commun., 2016, 7(1): 13564

      DOI " />

      Interactions of impurity interstitial atoms with dislocations may play an important role in strengthening of structural materials as well as in other phenomena like hydrogen embrittlement. Impurity interstitial atoms occupy octahedral (typical for carbon) or tetrahedral (typical for hydrogen) sites in bcc metals, both showing solely tetragonal symmetry of three types distinguished by orientation with respect to the main crystallographic (1, 2, 3) directions. Placing an atom at one of such sites one of the three types of local multiaxial eigenstrain states is provoked. This eigenstrain state interacts with the stress field of the dislocation, and the corresponding interaction term provides a mechanical part of the generalized chemical potential of the interstitial component. For a proper description of the distribution of the interstitial component in the stressed lattice three site fractions X-1, X-2 and X-3, corresponding to the types of sites, are necessary. Interstitials like hydrogen and carbon are mobile even at room temperature and diffuse spontaneously to places with the lowest interaction energy. As the individual types of interstitial sites are interconnected by fast diffusion paths, one can assume local equilibrium among atoms occupying the three types of interstitial sites. This fact is expressed by a unique value of their generalized chemical potential. The gradient of this potential drives diffusion of interstitial atoms. At any time the atoms redistribute locally to the three types of sites according to the condition of local equilibrium. Thus, generally in the stressed bcc lattice the three site fractions X-1, X-2 and X-3 have different values and provoke a multiaxial eigenstrain state resulting in an eigenstress state. Hence, the stress field of the dislocation is superposed by the eigenstress state. This may cause a significant relaxation (i.e. reduction) of the total stress state depending on the amount of the interstitial atoms in the system and their diffusion kinetics. Very recently, the individual diffusion paths of interstitial atoms occupying octahedral or tetrahedral positions in a stressed bcc lattice have been identified. The respective model predicts a significant anisotropy of diffusion caused by the differences in local values of X-1, X-2 and X-3 in addition to the standard elastodiffusion due to deformation of the lattice. This leads to a significant modification of the standard diffusion equation, because the introduced "diffusion occupancy factors" are directly dependent on the values of X-1, X-2 and X-3. Assuming a straight dislocation (with its dislocation line coinciding with the z-coordinate axis and the slip plane as the x-z-plane of the local coordinate system) and its interaction with the interstitial component, it is advantageous to evaluate the eigenstrain tensor in the local coordinate system (x, y, z) and solve the problem in that system. Then the space around the dislocation can be divided into cylindrical representative volume elements with axes parallel to z-axis and small cross-sections in x- and y- directions. In each of the representative volume elements spatially constant values of Xi, X-2 and X-3 and of the eigenstrain tensor are assumed. As one can calculate the eigenstress state inside and outside of each cylindrical representative volume element, embedded in an eigenstrain-free infinite matrix, the total stress state is then given by linear superposition of the eigenstress states of all representative volume elements and the stress state induced by the dislocation. The goal of the proposed review paper is to comprise a collection of the knowledge of the last seven decades dealing with the following topics: stress fields induced by edge and screw dislocation; a presentation of the most recent solution technique and discussion of previous solutions; eigenstrains of carbon and hydrogen atoms placed in octahedral and tetrahedral sites; a selection of the values of reliable sources; assembling of the interstitial atoms, acting as inclusions with a misfit eigenstrain state, in cylindrical representative volume elements; eigenstrain states in cylindrical representative volume elements due to occupancy of interstitial atoms described by X-1, X-2 and X-3; eigenstress fields generated by eigenstrains in cylindrical representative volume elements; formulation of the generalized chemical potential of interstitial atoms in the stressed bcc lattice; anisotropic diffusion equations for interstitials in a stressed bcc lattice, accounting for elastodiffusion and the effect of occupancy of different types of interstitial sites. A collection of equations provides a basis for acquiring a complex model of kinetics of interactions of interstitial atoms with (especially prioritizing) dislocations in the bcc lattice. This represents the "research part" of the review paper. Thus the paper focuses on kinetics of interactions of interstitials occupying tetrahedral and octahedral positions with edge and screw dislocations. As results of simulations the kinetics of distribution of the site fractions X-1, X-2 and X-3 around the dislocation as well as the relaxation (i.e. reduction) of the dislocation stress due to eigenstress are provided.

      [15]

      Moon J, Jang M J, Bae J W, et al.

      Mechanical behavior and solid solution strengthening model for face-centered cubic single crystalline and polycrystalline high-entropy alloys

      [J]. Intermetallics, 2018, 98: 89

      DOIURL

      [16]

      Sohn S S, Da Silva A K, Ikeda Y, et al.

      Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion

      [J]. Adv. Mater., 2019, 31(8): 8

      [本文引用: 3]

      [17]

      Sohn S S, Kim D G, Jo Y H, et al.

      High-rate superplasticity in an equiatomic medium-entropy VCoNi alloy enabled through dynamic recrystallization of a duplex microstructure of ordered phases

      [J]. Acta Mater., 2020, 194: 106

      DOIURL [本文引用: 1]

      [18]

      ChenY, Tu J, Zhang Y B, et al.

      Effect of deformation and annealing process on microstructural evolution of Fe47Mn30Co10Cr10B3 high entropy alloy

      [J]. Chin. J. Mater. Res., 2021, 35(2): 143

      [本文引用: 1]

      陳 揚(yáng), 涂 堅(jiān), 張琰斌 等.

      形變和退火對(duì)Fe47Mn30Co10Cr10B3間隙高熵合金微觀組織結(jié)構(gòu)演變的影響

      [J]. 材料研究學(xué)報(bào), 2021, 35(2): 143

      [本文引用: 1]

      [19]

      Yang M X, Yan D S, Yuan F P, et al.

      Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength

      [J]. Proc. Natl. Acad. Sci. U S A, 2018, 115(28): 7224

      DOIURL [本文引用: 1] " />

      Interstitial solid strengthening is an effective strategy to harden metallic materials, however, it usually deteriorates the ductility. Here, we report that addition of carbon into the medium-entropy NiCoCr alloy successfully enhances the strength at no expense of ductility. It was found that up to 0.75 at.% carbon was completely solid-solutionized in (NiCoCr)(100-x)C-x (x = 0, 0.10, 0.25, 0.50 and 0.75 at.%) without formation of any carbides. With the increase of carbon content from 0 to 0.75 at.%, the yield and fracture strength were increased from 242 to 347 MPa to 727 and 862 MPa, respectively, whilst the ductility kept as high as about 75%. It is noteworthy that the integral of the stress over strain for the alloy with 0.75 at.% carbon reaches a value of 59 GPa %, surmounting the level of many reported multi-principal elements alloys. Our analysis indicates that carbon addition increases stacking fault energy, thus delaying occurrence of twinning and decreasing the thickness of twin lamellas. At the early deformation stage, carbon decreases the stress localization and stimulates dislocation multiplication. After occurrence of deformation twinning, finer twinning structure in the alloys added with carbon not only can obstacle and trigger more dislocations, but also transfer plastic deformation more efficiently, thus promoting the twinning process, postponing the plastic instability and eventually giving rise to a more pronounced work-hardening. Our results not only have important implications for understanding the solid solution strengthening mechanism in medium-entropy alloys, but also shed lights on developing advanced metallic alloys with a unique combination of strength and ductility.

      [21]

      Stepanov N D, Shaysultanov D G, Chernichenko R S, et al.

      Effect of thermomechanical processing on microstructure and mechanical properties of the carbon-containing CoCrFeNiMn high entropy alloy

      [J]. J. Alloy Compd., 2017, 693: 394

      DOIURL [本文引用: 1]

      [22]

      Wang Z W, Lu W J, Raabe D, et al.

      On the mechanism of extraordinary strain hardening in an interstitial high-entropy alloy under cryogenic conditions

      [J]. J. Alloy Compd., 2019, 781: 734

      DOIURL [本文引用: 1]

      [23]

      Saha J, Bhattacharjee P P.

      Influences of Thermomechanical Processing by Severe Cold and Warm Rolling on the Microstructure, Texture, and Mechanical Properties of an Equiatomic CoCrNi Medium-Entropy Alloy

      [J]. J. Mater. Eng. Perform., 2021, 30(12): 8956

      DOI [本文引用: 1]

      [24]

      Bhattacharjee P P, Sathiaraj G D, Zaid M, et al.

      Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy

      [J]. J. Alloy Compd., 2014, 587: 544

      DOIURL [本文引用: 1]

      [25]

      Xiao J K, Tan H, Chen J, et al.

      Effect of carbon content on microstructure, hardness and wear resistance of CoCrFeMnNiCx high-entropy alloys

      [J]. J. Alloy Compd., 2020, 847: 156533

      DOIURL [本文引用: 1]

      [26]

      Liu J Z, Liu H X, Di Y N, et al.

      Effects of carbon content on friction and wear behavior and corrosion resistance of laser cladding CoCrFeMnNiC x high entropy alloy coatings

      [J]. China Surface Engineering, 2020, 33(6): 118

      [本文引用: 1]

      劉徑舟, 劉洪喜, 邸英南 等.

      碳含量對(duì)激光熔覆CoCrFeMnNiC x 熵合金涂層摩擦磨損和耐蝕性能的影響

      [J]. 中國(guó)表面工程, 2020, 33(6): 118

      [本文引用: 1]

      [27]

      Deng L, Bai C Y, Jiang Z T, et al.

      Effect of B4C particles addition on microstructure and mechanical properties of Fe50Mn30Co10Cr10 high-entropy alloy

      [J]. Mat. Sci. Eng. A, 2021, 822: 141642

      DOIURL [本文引用: 1]

      [28]

      Andersson J O, Helander T, Hoglund L H, et al.

      THERMO-CALC and DICTRA, computational tools for materials science

      [J]. Calphad, 2002, 26(2): 273

      DOIURL [本文引用: 1]

      [29]

      Sathiaraj G D, Bhattacharjee P P.

      Effect of cold-rolling strain on the evolution of annealing texture of equiatomic CoCrFeMnNi high entropy alloy

      [J]. Mater. Charact., 2015, 109: 189

      DOIURL [本文引用: 1]

      [30]

      Li Z Q, Wang J S, Huang H B.

      Influences of grain/particle interfacial energies on second-phase particle pinning grain coarsening of polycrystalline

      [J]. J. Alloy Compd., 2020, 818: 10

      [本文引用: 1]

      [31]

      Seol J B, Bae J W, Li Z M, et al.

      Boron doped ultrastrong and ductile high-entropy alloys

      [J]. Acta Mater, 2018, 151: 366

      DOIURL [本文引用: 1]

      [32]

      Suzuki S, Abiko K, Kimura H.

      Chemical state of phosphorus segregated at grain boundaries in iron

      [J]. Transactions of the Iron and Steel Institute of Japan, 1983, 23(9): 746

      DOIURL [本文引用: 1]

      High-entropy alloys: a critical review

      2

      2014

      聲明:
      “C含量對(duì)VCoNi中熵合金微觀組織和性能的影響” 該技術(shù)專(zhuān)利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
      我是此專(zhuān)利(論文)的發(fā)明人(作者)
      分享 0
               
      舉報(bào) 0
      收藏 0
      反對(duì) 0
      點(diǎn)贊 0
      標(biāo)簽:
      金屬材料 中熵合金
      全國(guó)熱門(mén)有色金屬技術(shù)推薦
      展開(kāi)更多 +

       

      中冶有色技術(shù)平臺(tái)微信公眾號(hào)
      了解更多信息請(qǐng)您掃碼關(guān)注官方微信
      中冶有色技術(shù)平臺(tái)微信公眾號(hào)中冶有色技術(shù)平臺(tái)

      最新更新技術(shù)

      報(bào)名參會(huì)
      更多+

      報(bào)告下載

      第二屆中國(guó)微細(xì)粒礦物選礦技術(shù)大會(huì)
      推廣

      熱門(mén)技術(shù)
      更多+

      衡水宏運(yùn)壓濾機(jī)有限公司
      宣傳
      環(huán)磨科技控股(集團(tuán))有限公司
      宣傳

      發(fā)布

      在線客服

      公眾號(hào)

      電話

      頂部
      咨詢電話:
      010-88793500-807
      專(zhuān)利人/作者信息登記