電解水制氫,是一種理想的可持續(xù)制氫方法[1]
電解水反應(yīng),包括析氧(OER)電極反應(yīng)和析氫(HER)電極反應(yīng)[2]
在OER和HER的電子轉(zhuǎn)移步驟和反應(yīng)中間體吸/脫附步驟中都存在過程勢(shì)壘,因此需要一定的過電位(ηOER或ηHER)以克服較高的過程勢(shì)壘形成的動(dòng)力學(xué)障礙[3,4]
為了提高電解水制氫的能量轉(zhuǎn)換效率,須使用具有催化活性的電極材料來降低OER和HER的反應(yīng)過電位
貴金屬基材料具有極高的電解水催化活性,RuO2和Pt/C分別是OER和HER催化材料的典型代表[5]
但是,貴金屬基材料價(jià)格昂貴,需要尋找可代替的非貴金屬材料
金屬Co在HER過程中屬于中過電位金屬,常用作OER過程的催化電極材料[6]
當(dāng)Co與B結(jié)合時(shí)Co的d帶收縮使能量中心靠近Fermi能級(jí)
因此,Co-B合金或Co的硼化物具有比純Co更高的電解水催化活性[7]
在Co-B二元組成的基礎(chǔ)上引入Ni,可提高其OER催化活性[8]
Co與Ni的協(xié)同作用使Co-Ni-B具有與Pt/C接近的HER催化活性,因此在Co-B中添加適當(dāng)?shù)漠惙N元素可進(jìn)一步提高其電解水催化活性[9]
可將W基材料應(yīng)用于電解水[10,11,12,13],將W引入Co-B顯著影響其電子結(jié)構(gòu)[14]
常見的催化材料呈粉末狀,制備電極時(shí)須使用粘結(jié)劑將其涂覆到基底電極表面
粘結(jié)劑使電極的內(nèi)阻增加和掩蔽催化活性位點(diǎn)
同時(shí),在工作過程中粘結(jié)劑的附著力較小容易使催化材料脫落
因此,業(yè)界提出使用“自支撐電極”
將催化活性物質(zhì)原位沉積在具有宏觀物理形態(tài)、自身化學(xué)性質(zhì)穩(wěn)定的導(dǎo)電載體上,形成穩(wěn)固的自支撐催化電極[15]
碳布(CC)材料的導(dǎo)電性和化學(xué)穩(wěn)定性高、質(zhì)量輕、柔韌性好,可作為自支撐型導(dǎo)電載體[16]
本文應(yīng)用簡易的濕化學(xué)還原過程在CC上原位沉積非晶態(tài)Co-W-B物質(zhì)形成自支撐的Co-W-B/CC復(fù)合電極材料,作為電解水過程中的陰極和陽極,研究其電解水催化活性和催化穩(wěn)定性
1 實(shí)驗(yàn)方法1.1 Co-W-B/CC復(fù)合電極材料的制備
通過濕化學(xué)還原將Co-W-B催化活性物質(zhì)沉積在1cm×1cm的碳布(CC)上
先在濃硫酸和濃硝酸(VH2SO4:VHNO3=3:1)的混合液中對(duì)CC進(jìn)行活化處理,分別用去離子水、無水乙醇超聲清洗后自然干燥
配制溶液A:將CoCl2·6H2O和Na2WO4·2H2O溶入去離子水,控制[Co2+]+[WO42-]=0.3 mol/L,用氨水調(diào)節(jié)pH值為10
配制溶液B:將NaBH4和NaOH溶入去離子水,NaBH4為1.0 mol/L,NaOH為0.25 mol/L
將一定體積的溶液A置入冰水浴,然后將活化處理過的CC浸泡在溶液A中并施加超聲波震蕩
另取相同體積的溶液B逐滴加入到溶液A中,然后維持反應(yīng)60 min
最后,將得到的Co-W-B/CC樣品取出,用去離子水洗凈后放入60℃的真空干燥箱中進(jìn)行干燥
通過改變?nèi)芤篈中WO42-的摩爾濃度占比(χW%=[WO42-]/([WO42-]+[Co2+])×100%,χW%=0%、χW%=25%、33%、50%、66%、75%)調(diào)節(jié)Co-W-B中的Co、W元素比例
將不同Co、W元素比例的樣品記為Co-χW-B/CC(χW%=0%時(shí),即Co-B/CC)
用增重法測(cè)得不同Co-W-B在CC表面的沉積量均為~0.38 mg/cm2
作為對(duì)比,將0.38 mg的商用20wt.% Pt/C和RuO2用傳統(tǒng)的涂覆方式分別負(fù)載在1 cm×1 cm的CC表面
1.2 性能表征和
電化學(xué)測(cè)試
用FESEM(Hitachi SU5000)、EDX(Oxford X-act)分別測(cè)試樣品的表面形貌、元素種類、元素含量及分布狀況
用XRD(Rigaku Ultimal Ⅳ)測(cè)試樣品的物相和晶體結(jié)構(gòu)
使用電化學(xué)工作站(Princeton VersaSTAT4)在25℃下1 mol/L NaOH溶液中對(duì)樣品進(jìn)行電化學(xué)測(cè)試
在三電極測(cè)試體系中,參比電極為Hg/HgO/OH-(1 mol/L)電極,對(duì)電極為2 cm2的碳棒電極,所制得的樣品為工作電極,樣品測(cè)試面積為1 cm2
本文所有電化學(xué)測(cè)試結(jié)果的電位值,均換算為相對(duì)于標(biāo)準(zhǔn)氫電極(RHE)
線性掃描伏安曲線(LSV)的掃描速率為5 mV/s,OER與HER測(cè)試過程的掃描電位區(qū)間分別為0.87~2.07Vvs.RHE和0.22~2.62Vvs.RHE;電化學(xué)阻抗譜(EIS)的測(cè)試頻率范圍為105~10-2 Hz,擾動(dòng)電位幅值為5 mV
2 結(jié)果和討論2.1 Co-W-B/CC復(fù)合電極材料的的表面形貌
作為基底材料的CC,由表面光滑、直徑約10 μm的
碳纖維構(gòu)成(圖1a)
在制備過程中χW%=50%的樣品(Co-50W-B/CC),其表面形貌如圖1b和c所示
可見碳纖維表面被較為致密的沉積物所包覆,這種沉積物由直徑為200~800 nm的胞狀顆粒聚集而成,部分胞狀顆粒之間有空隙,材料的微觀表面高度粗糙
EDX分析(圖1c-inset)結(jié)果表明,該沉積物中有Co、W、B、O四種元素(C元素信號(hào)來源于CC基底),其原子分?jǐn)?shù)分別為44.65%、4.86%、42.62%和7.87%
相應(yīng)的表面元素分布情況如圖1d所示,表明上述四種元素均勻分布在沉積物中
圖1
圖1CC和Co-50W-B/CC的SEM照片、(c-inset) Co-50W-B/CC的EDX能譜以及Co-50W-B/CC的表面元素分布
Fig.1SEM image of CC (a); SEM images of Co-50W-B/CC (b, c)、(c-inset) EDX energy spectrum of Co-50W-B/CC and EDX-mapping of Co-50W-B/CC (d)
如圖2a所示,當(dāng)制備過程中隨著χW%值從25%逐漸升至75%沉積物中Co元素含量不斷降低,W元素含量不斷升高,B元素含量(原子分?jǐn)?shù))則在39.9%~43.6%內(nèi)波動(dòng)
由于BH4-難以將WO42-還原為零價(jià)W,產(chǎn)物中的W元素一般以其低價(jià)態(tài)氧化物的形式存在[14]
因此,EDX分析結(jié)果表明,各樣品中均存在O元素且伴隨W元素含量的提高O元素的含量也呈上升趨勢(shì)
圖2b給出了CC和不同Co-W-B/CC樣品的XRD衍射圖譜
在CC樣品的圖譜中,23.8°和44°附近的衍射峰分別對(duì)應(yīng)C(JCPD file#08-0451)的(002)及(101)晶面
五種Co-W-B/CC樣品也只在23.8°和44°附近出現(xiàn)衍射峰,短時(shí)其強(qiáng)度比CC樣品顯著降低且漫散射信號(hào)加強(qiáng),意味著這些Co-W-B沉積物以非晶狀態(tài)包覆CC表面形成
以往用類似反應(yīng)制備Co-B或Ni-B粉體材料,其產(chǎn)物多為非晶態(tài)[17,18]
由圖3可見,χW%值過高(χW%≥66%)時(shí)Co-W-B沉積物在CC表面分布不均,且沉積物的結(jié)構(gòu)疏松,使其對(duì)CC的包覆程度降低
因此,Co-66W-B/CC和Co-75W-B/CC樣品的C衍射峰強(qiáng)度明顯高于其他樣品
圖2
圖2χW%值([WO42-]/([WO42-]+[Co2+])摩爾百分比)對(duì)Co-W-B催化活性物質(zhì)中元素含量的影響和 CC以及不同Co-W-B/CC樣品的XRD衍射圖譜
Fig.2Effect of the χW% ([WO42-]/([WO42-]+[Co2+]) mole percentage) on the content of elements in Co-W-B (a) and XRD patterns of CC and Co-W-B/CC samples(b)
圖3
圖3Co-66W-B/CC和Co-75W-B/CC的SEM照片
Fig.3SEM image of Co-66W-B/CC (a) and Co-75W-B/CC (b)
2.2 Co-W-B/CC復(fù)合電極材料的電催化OER、HER活性及其機(jī)制
目前工業(yè)上實(shí)施的電解水工藝大都在堿性環(huán)境中進(jìn)行[19],因此本文在1 mol/L NaOH溶液中分析Co-W-B/CC材料的電解水催化活性,包括陽極反應(yīng)的OER過程和陰極反應(yīng)的HER過程
五種Co-W-B/CC樣品OER過程的線性掃描伏安曲線(LSV),如圖4a所示
隨著制備過程中χW%值的提高樣品的OER活性呈現(xiàn)先升后降的變化趨勢(shì),其中Co-50W-B/CC的OER活性最高
與CC、Co-B/CC和RuO2樣品的LSV曲線(圖4b)比較,Co-W-B/CC樣品的OER活性均顯著高于CC和Co-B/CC,其中Co-50W-B/CC的OER活性與RuO2接近,甚至在較低的電位區(qū)間超越了RuO2
陽極電流密度為10 mA/cm2時(shí),不同樣品的OER過電位(ηOER-10)分別為ηOER-10,CC=0.548 V、ηOER-10,Co-B/CC=0.462 V、ηOER-10,RuO2=0.432 V、ηOER-10,Co-25W-B/CC=0.438 V、ηOER-10,Co-33W-B/CC=0.406 V、ηOER-10,Co-50W-B/CC=0.394 V、ηOER-10,Co-66W-B/CC=0.441 V、ηOER-10,Co-75W-B/CC=0.457 V
圖4
圖4不同Co-W-B/CC樣品的LSV曲線(嵌入圖為1.50~1.75VvsRHE電位范圍的局部放大圖)、Co-50W-B/CC、CC、Co-B/CC和RuO2樣品的LSV曲線、 Co-50W-B/CC、CC、Co-B/CC和RuO2樣品的Tafel斜率、不同Co-W-B/CC樣品和Co-50W-B/CC、Co-B/CC和RuO2樣品的EIS曲線以及不同樣品的Cdl-OER值和j0-real-OER值
Fig.4OER process:LSV curves of Co-W-B/CC samples (the inset figure is the enlarged view of 1.50~1.75VvsRHE) (a), LSV curves of Co-50W-B/CC, CC, Co-B/CC and RuO2 (b), Tafel slopes of Co-50W-B/CC, CC, Co-B/CC and RuO2 (c), EIS plots of Co-W-B/CC samples (d), EIS plots of Co-50W-B/CC, CC, Co-B/CC and RuO2 (e),and Cdl-OER and j0-real-OER of samples (f)
Tafel斜率(Tafel曲線的線性極化區(qū)斜率)也能在一定程度上反映電極材料的催化活性[20]
Tafel斜率越低則電極反應(yīng)速率(反應(yīng)電流密度)隨過電位增加而提升的幅度越大,意味著催化活性越高[21]
根據(jù)圖4b計(jì)算出相應(yīng)樣品的Tafel斜率,畫在圖4c中
可以看出,Co-50W-B/CC的Tafel斜率為96.8 mV/dec,比CC(144.5 mV/dec)和Co-B/CC(131.1 mV/dec)大幅降低,只比RuO2(94.7 mV/dec)高約2.2%,再次說明Co-50W-B/CC的OER活性與RuO2接近
此外,相近的Tafel斜率還表明,Co-50W-B/CC與RuO2兩者表面發(fā)生OER過程的反應(yīng)動(dòng)力學(xué)機(jī)制類似[22]
在陽極過電位為0.6 V的條件下測(cè)定了不同樣品的電化學(xué)阻抗譜(EIS),如圖4d和4e所示
EIS曲線均有兩個(gè)容抗弧,表明各樣品表面的電極過程有兩個(gè)時(shí)間常數(shù),其中弦長較小的高頻容抗弧與電極表面的微觀孔隙有關(guān),弦長較大的中-低頻容抗弧則與電荷轉(zhuǎn)移過程相關(guān)[9]
圖4d中的插圖為表征電極過程的等效電路模型,其中Rs為溶液電阻,R1為孔隙電阻,Rct為電荷轉(zhuǎn)移電阻,CPE1和CPE2為分別代表孔隙電容和雙電層電容的恒相位角元件
根據(jù)對(duì)Rct值的比較,可判斷電極表面法拉第過程的難易程度[23]
根據(jù)等效電路模型對(duì)EIS數(shù)據(jù)進(jìn)行擬合,得出OER過程的Co-50W-B/CC的Rct值為2.24 Ω/cm2,幾近于RuO2 (2.17 Ω/cm2),Co-B/CC (8.87 Ω/cm2)、Co-25W-B/CC (3.86 Ω/cm2)、Co-33W-B/CC (3.18 Ω/cm2)、Co-66W-B/CC (4.36 Ω/cm2)和Co-75W-B/CC(5.92 Ω/cm2)五種樣品的Rct值則相對(duì)較高
這些結(jié)果表明,Co-50W-B/CC可有效促進(jìn)OER過程中的界面電子轉(zhuǎn)移,加速反應(yīng)的進(jìn)行
經(jīng)EIS數(shù)據(jù)擬合得到的OER過程的雙電層電容(Cdl-OER),反映電極材料表面催化活性位點(diǎn)的多少[24]
根據(jù)圖4a和b中的LSV曲線并結(jié)合Tafel關(guān)系式,可推算出不同樣品OER過程的表觀交換電流密度(j0-OER)
而OER過程的表觀交換電流密度與其雙電層電容的比值(j0-real-OER=j0-OER/Cdl-OER),則是表征電極材料OER本征催化活性的直觀參量[25]
各樣品的Cdl-OER和j0-real-OER的計(jì)算結(jié)果,如圖4f所示
RuO2是典型的高活性O(shè)ER催化材料,其j0-real-OER值遠(yuǎn)高于其他樣品,但其Cdl-OER值卻最小
其原因是,在電極的制備過程中RuO2粉體的團(tuán)聚和粘結(jié)劑掩蔽了部分催化活性位點(diǎn)
在CC表面自主沉積形成的Co-W-B/CC和Co-B/CC樣品中,Co-50W-B/CC的Cdl-OER值和j0-real-OER值均最大
據(jù)此分析,Co-50W-B/CC的OER活性與RuO2接近,可能與兩個(gè)因素有關(guān)
其一是,非晶結(jié)構(gòu)造成活性原子配位高度不飽和,且其微觀表面高度粗糙不存在粘結(jié)劑,使之產(chǎn)生并暴露出更多的催化活性位點(diǎn),提高了OER反應(yīng)的發(fā)生幾率[25]
其二是,由于靜電吸引OH-易于與Co-W-B中呈氧化態(tài)的Wδ+發(fā)生配位
電負(fù)性較強(qiáng)的B原子促使配位的OH-發(fā)生去質(zhì)子化而形成過氧化物中間體(*OOH),進(jìn)而促進(jìn)OER反應(yīng)的進(jìn)行[26],而χW%=50%的樣品(Co-50W-B/CC)其元素比例可能更利于這一情況的發(fā)生
針對(duì)電解水過程的陰極反應(yīng),各樣品HER過程的LSV曲線,如圖5a和b所示,選擇Pt/C作為HER過程的性能對(duì)照
Pt/C的HER活性最高,陰極電流密度為-10 mA/cm2時(shí)的HER過電位(ηHER-10)為0.031 V,而CC幾乎無HER活性
Co-W-B/CC樣品的HER活性均高于Co-B/CC,其中Co-50W-B/CC的HER活性相對(duì)最高
-10 mA/cm2時(shí)不同Co-W-B/CC樣品和Co-B/CC的析氫過電位分別為ηHER-10,Co-B/CC=0.229 V、ηHER-10,Co-25W-B/CC = 0.149 V、ηHER-10,Co-33W-B/CC = 0.132 V、ηHER-10,Co-50W-B/CC = 0.094 V、ηHER-10,Co-66W-B/CC = 0.137 V、ηHER-10,Co-75W-B/CC = 0.153 V
圖5c給出了Co-50W-B/CC、CC、Co-B/CC和Pt/C四種樣品HER過程的Tafel斜率
Pt/C的Tafel斜率為31.9 mV/dec,與以往諸多報(bào)道的數(shù)值極為接近[27,28],其表面的HER反應(yīng)動(dòng)力學(xué)過程受Tafel步驟控制
Co-50W-B/CC (117.4 mV/dec)和Co-B/CC(156.2 mV/dec)的Tafel斜率接近于120 mV/dec,表明兩者表面的HER反應(yīng)動(dòng)力學(xué)過程受Volmer步驟控制[29]
W的外圍電子層排布為5d46s2,有1個(gè)空的和4個(gè)半滿的5d軌道,易于接受氫原子的吸附,從而促進(jìn)HER過程中Volmer反應(yīng)的進(jìn)行
因此,Co-50W-B/CC的Tafel斜率比Co-B/CC下降了38.8 mV/dec
有必要指出,W含量過高時(shí)氫原子的脫附變得困難,將抑制后續(xù)的H2析出,進(jìn)而阻礙HER反應(yīng)的進(jìn)行
因此,Co-W-B中的W含量應(yīng)控制在一定的合理范圍內(nèi)
圖5
圖5不同Co-W-B/CC樣品的LSV曲線(嵌入圖為-0.10~-0.30VvsRHE電位范圍的局部放大圖)、Co-50W-B/CC、CC、Co-B/CC和Pt/C樣品的LSV曲線、Co-50W-B/CC、CC、Co-B/CC和Pt/C樣品的Tafel斜率、不同Co-W-B/CC樣品的EIS曲線、Co-50W-B/CC、Co-B/CC和Pt/C樣品的EIS曲線以及不同樣品的Cdl-HER值和j0-real-HER值
Fig.5HER process: LSV curves of Co-W-B/CC samples (the inset figure is the enlarged view of -0.10~-0.30VvsRHE) (a), LSV curves of Co-50W-B/CC, CC, Co-B/CC and Pt/C (b), Tafel slopes of Co-50W-B/CC, CC, Co-B/CC and Pt/C (c), EIS plots of Co-W-B/CC samples (d), EIS plots of Co-50W-B/CC, CC, Co-B/CC and RuO2 (e) and Cdl-HER and j0-real-HER of samples (f)
在0.1 V陰極過電位下不同樣品的EIS曲線,如圖5d和e所示
與OER過程類似,HER過程的EIS曲線也都有兩個(gè)容抗弧,也用等效電路模型對(duì)EIS數(shù)據(jù)進(jìn)行擬合
在HER過程中Co-50W-B/CC的Rct值為6.46 Ω/cm2,低于Co-B/CC(28.78 Ω/cm2)、Co-25W-B/CC(19.53 Ω/cm2)、Co-33W-B/CC(13.49 Ω/cm2)、Co-66W-B/CC (14.23 Ω/cm2)和Co-75W-B/CC (25.22 Ω/cm2)五種樣品,僅比Pt/C(3.46 Ω/cm2)高
因此,在HER過程中Co-50W-B/CC表面也能發(fā)生極快的界面電子轉(zhuǎn)移,使H+還原
各樣品在HER過程中的Cdl-HER和j0-real-HER(HER過程的表觀交換電流密度j0-HER與其雙電層電容的比值)的計(jì)算結(jié)果,如圖5f所示
在HER過程中Co-50W-B/CC的Cdl-HER值也最大,其j0-real-HER值也只比Pt/C低
換言之,在所測(cè)試的樣品中,Co-50W-B/CC有最多的HER催化活性位點(diǎn)和只次于Pt/C的HER本征催化活性
2.3 Co-W-B/CC復(fù)合電極材料的電催化穩(wěn)定性和全解水活性
圖6a和b給出了Co-50W-B/CC在1 mol/L NaOH溶液中分別經(jīng)歷1000次OER循環(huán)測(cè)試和1000次HER循環(huán)測(cè)試結(jié)果,可見測(cè)試前后的LSV曲線均十分接近
以電流密度絕對(duì)值為50 mA/cm2時(shí)的OER過電位和HER過電位為例,分別循環(huán)1000次后,ηOER較首次增加10 mV、ηHER較首次增加6 mV,增幅分別為5.7%和2.4%
分別在30 mA/cm2(OER過程)和-30 mA/cm2(HER過程)的電流密度下恒電流極化24 h的V-t曲線,如圖6c所示,可見極化過程中的陽極電位和陰極電位均整體保持穩(wěn)定
這表明,無論在OER過程還是HER過程,Co-50W-B/CC都表現(xiàn)出良好的電催化穩(wěn)定性
圖6
圖6Co-50W-B/CC在OER過程中循環(huán)1000次前后的LSV曲線、Co-50W-B/CC在HER過程中循環(huán)1000次前后的LSV曲線、Co-50W-B/CC在30 mA/cm2和-30 mA/cm2下的V-t曲線以及Co-50W-B/CC(+)??Co-50W-B/C(-)與RuO2(+)??Pt/C(-)的全解水活性比較
Fig.6LSV curves of Co-50W-B/CC before and after 1000 potential cycles in OER process (a), LSV curves of Co-50W-B/CC before and after 1000 potential cycles in HER process (b), V-t plots of Co-50W-B/CC at 30 mA/cm2 and -30 mA/cm2 (c) and comparison for the electrocatalytic water splitting activity of Co-50W-B/CC(+)??Co-50W-B/CC(-) and RuO2(+)??Pt/C(-) (d)
在恒電流電解水工藝的操作中,其全解水過程的槽電壓為Ecell=E0OER +ηOER+E0HER+ηHER[30]
因此,根據(jù)OER和HER過程的LSV曲線可以計(jì)算出Co-50W-B/CC同時(shí)作為陽極和陰極時(shí)(Co-50W-B/CC(+)??Co-50W-B/CC(-))特定電解電流密度(注:LSV曲線中電流密度的+/-號(hào)表示其為陽極或陰極反應(yīng),全解水過程的電解電流密度取其絕對(duì)值)下的Ecell,并與RuO2和Pt/C分別作為陽極和陰極時(shí)(RuO2(+)??Pt/C(-))相應(yīng)的Ecell進(jìn)行比較,結(jié)果如圖6d所示
在較低的電解電流密度下Co-50W-B/CC(+)??Co-50W-B/CC(-)的Ecell值與RuO2(+)??Pt/C(-)的十分接近
往往將
光伏發(fā)電設(shè)備與電解水設(shè)備相結(jié)合,通過電解水來儲(chǔ)存
光伏發(fā)電設(shè)備所產(chǎn)生的電能,這類設(shè)備的電解電流密度約為10 mA/cm2[31]
電解電流密度為10 mA/cm2時(shí),Co-50W-B/CC(+)??Co-50W-B/CC(-)的Ecell值為1.718 V,僅比RuO2(+)??Pt/C(-)高出0.026 V
3 結(jié)論
(1) 通過濕化學(xué)還原在CC表面沉積非晶Co-W-B催化活性物質(zhì),可制備一種自支撐的Co-W-B/CC復(fù)合電極材料
這種材料在堿性環(huán)境(1 mol/L NaOH)中表現(xiàn)出理想的電解水催化活性
[WO42-]/([WO42-]+[Co2+])比值為50%的Co-50W-B/CC樣品的催化活性最高:10 mA/cm2時(shí)的OER過電位為0.394 V,-10 mA/cm2時(shí)的HER過電位為0.094 V
(2) 使用Co-50W-B/CC同時(shí)作為陽極和陰極進(jìn)行全解水時(shí),在10 mA/cm2電解電流密度下Co-50W-B/CC(+)??Co-50W-B/CC(-)的Ecell值為1.718 V,只比RuO2(+)??Pt/C(-)高0.026 V
(3) 本征催化活性和電化學(xué)活性面積的提高,使Co-50W-B/CC樣品在較低電流密度下具有與貴金屬基材料接近的催化活性
Co-50W-B/CC樣品在OER和HER過程都具有良好的催化穩(wěn)定性
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Wang J, Wei Z Z, Wang H Y.
CoOx-carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters
[J]. Journal of Materials Chemistry A, 2017, 5(21): 10510
[本文引用: 1]
[2]
Zhang Y, Shao Q, Long S.
Cobalt-molybdenum nanosheet arrays as highly efficient and stable earth-abundant electrocatalysts for overall water splitting
[J]. Nano Energy, 2018, 45: 448
[本文引用: 1]
[3]
Chen Z L, Wu R B, Liu Y.
Ultrafine Co nanoparticles encapsulated in carbon-nanotubes-grafted graphene sheets as advanced electrocatalysts for the hydrogen evolution reaction
[J]. Advanced Materials, 2018, 30(30): 1802011
DOIURLPMID [本文引用: 1] " />
-2 OER current density and 233 mV for reaching 100 mA cm-2 under chronopotentiometry condition, with the Tafel slope harmoniously conforming to 34 mV dec-1 . Impressive long-term stability of this new catalyst is evidenced by only limited activity decay after 1400 h operation at 100 mA cm-2 . This work strategically directs a way for heading up a promising energy conversion alternative.]]>
[8]
Wang S, He P, Xie Z W.
Tunable nanocotton-like amorphous ternary Ni-Co-B: A highly efficient catalyst for enhanced oxygen evolution reaction
[J]. Electrochimica Acta, 2019, 296: 644
[本文引用: 1]
[9]
Sheng M Q, Wu Q, Wang Y.
Network-like porous Co-Ni-B grown on carbon cloth as efficient and stable catalytic electrodes for hydrogen evolution
[J]. Electrochemistry Communications, 2018, 93: 104
[本文引用: 2]
[10]
Ji X Q, Ma M, Ge R X.
WO3 Nanoarray: An efficient electrochemical oxygen evolution catalyst electrode operating in alkaline solution
[J]. Inorganic Chemistry, 2017, 56(24): 14743
DOIURLPMID [本文引用: 1] " />
3BH3, AB) at room temperature. The particle size of the as-prepared Co-W-B film catalysts is varied by adjusting the depositional pH value to identify the most suitable particle size for hydrogen evolution of AB hydrolysis. The Co-W-B film catalyst with the particle size of about 67.3u202fnm shows the highest catalytic activity and can reach a hydrogen generation rate of 3327.7u202fmLu202fmin-1 gcat-1 at 298u202fK. The activation energy of the hydrolysis reaction of AB is determined to be 32.2u202fkJu202fmol-1. Remarkably, the as-obtained Co-W-B film is also a reusable catalyst preserving 78.4% of their initial catalytic activity even after 5 cycles in hydrolysis of AB at room temperature. Thus, the enhanced catalytic activity illustrates that the Co-W-B film is a promising catalyst for AB hydrolytic dehydrogenation in fuel cells and the related fields.]]>
[15]
Pi M Y, Wu T L, Zhang D K.
Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution
[J]. Nanoscale, 2016, 8(47): 19779
DOIURLPMID [本文引用: 1] " />
-2 for oxygen evolution reaction (OER) is currently working out at overpotentials higher than 320 mV. A highly efficient electrocatalyst should possess both active sites and high conductivity; however, the loading of powder catalysts on electrodes may often suffer from the large resistance between catalysts and current collectors. This work reports a class of bulk amorphous NiFeP materials with metallic bonds from the viewpoint of electrode design. The materials reported here perfectly combine high macroscopic conductivity with surface active sites, and can be directly used as the electrodes with active sites toward high OER activity in both alkaline and acidic electrolytes. Specifically, a low overpotential of 219 mV is achieved at the geometric current density 10 mA cm-2 in an alkaline electrolyte, with the Tafel slope of 32 mV dec-1 and intrinsic overpotential of 280 mV. Meanwhile, an overpotential of 540 mV at 10 mA cm-2 is attained in an acidic electrolyte and stable for over 30 h, which is the best OER performance in both alkaline and acidic media. This work provides a different angle for the design of high-performance OER electrocatalysts and facilitates the device applications of electrocatalysts.]]>
[18]
Zou X, Liu Y P, Li G D.
Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis
[J]. Advanced Materials, 2017, 29(32): 1700404
DOIURLPMID [本文引用: 1] " />
Exploring Earth-abundant electrocatalysts that are highly efficient, low cost, and stable for the oxygen evolution reaction (OER) are critical to energy storage and water splitting. Metal-organic frameworks (MOFs) have been regarded as superior electrocatalysts due to their atomically dispersed metal ions. Currently, MOFs have been widely studied as templates to fabricate electrocatalysts through thermal annealing. Here, we report a novel synthetic approach to fabricate a Ni-S/MIL-53(Fe) electrode by electrodepositing sulfur-engineered amorphous nickel hydroxides on MIL-53(Fe) nanosheets. The obtained binder-free, self-supported Ni-S/MIL-53(Fe) shows high OER activity with overpotentials of 256 and 298 mV to achieve 10 and 100 mA cm-2, respectively. Moreover, it also exhibits excellent electrochemical stability with no obvious degradation at 100 mA cm-2 for at least 40 h. The new findings may pave a new avenue for designing and fabricating low-cost catalysts with high efficiency for electrochemical applications.
[26]
Chen H Y, Ouyang S X, Zhao M.
Synergistic activity of Co and Fe in amorphous Cox-Fe-B catalyst for efficient oxygen evolution reaction
[J]. ACS Applied Materials & Interfaces, 2017, 9(46): 40333
DOIURLPMID [本文引用: 1] " />
2.72 (WO) in to efficient alkaline-solution-stable Co and Fe codoped WO2.72 (Co&Fe-WO) with porous urchin-like structure. The codoping lowers the chemical valence of W to ensure the durability of W-based catalyst, improves the electron-withdrawing capability of W and O to stabilize the Co and Fe in OER-favorable high valence state, and enriches the surface hydroxyls, which act as reactive sites. The Co&Fe-WO shows ultralow overpotential (226 mV, J = 10 mA cm-2), low Tafel slope (33.7 mV dec-1), and good conductivity. This catalyst is finally applied to a photovoltaic-water splitting system to stably produce hydrogen for 50 h at a high solar-to-hydrogen efficiency of 16.9%. This work highlights the impressive effect of electronic structure modulation on W-based catalyst, and may inspire the modification of potential but unstable catalyst for solar energy conversion.]]>
CoOx-carbon nanotubes hybrids integrated on carbon cloth as a new generation of 3D porous hydrogen evolution promoters
1
2017
聲明:
“非晶Co-W-B/碳布復(fù)合電極材料的制備及其電解水催化性能” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)