1998年Nozik首次用量子點(diǎn)作為光敏化劑,用無機(jī)半導(dǎo)體作為敏化劑制作新型敏化
太陽能電池[1]
近年來,量子點(diǎn)敏化太陽能電池(QDSSCs)發(fā)展迅速
目前基于合金化策略制備的五元合金量子點(diǎn)獲得了15.20%的認(rèn)證效率[2]
QDSSCs具有原料來源廣泛[3~7]、制備成本低廉、電池性能穩(wěn)定以及光電轉(zhuǎn)換效率較高的等優(yōu)勢(shì),是最具有開發(fā)潛力的新一代太陽能電池[8]
QDSSCs的結(jié)構(gòu)與DSSCs相同,都是由光陽極、電解液和對(duì)電極組成的典型的三明治結(jié)構(gòu)[9]
為了實(shí)現(xiàn)量子點(diǎn)敏化劑更好的匹配[10~13],QDSSCs的光陽極通常選用導(dǎo)帶底低于量子點(diǎn)敏化劑的寬帶隙半導(dǎo)體氧化物,以利于光生電子的注入[14]
量子點(diǎn)因其特有的“零維”空間結(jié)構(gòu)而具有一些特殊的物理特性
“零維”空間結(jié)構(gòu)為量子點(diǎn)注入了一些特殊的物理特性,如量子尺寸效應(yīng)使量子點(diǎn)具有帶隙可調(diào)性,可調(diào)節(jié)其光譜響應(yīng)范圍
與窄光譜染料敏化劑相比,寬光譜量子點(diǎn)敏化劑具有更高的吸光系數(shù),能更充分地利用太陽光
同時(shí),量子點(diǎn)敏化劑的多激子效應(yīng)可在吸收一個(gè)光子的情況下激發(fā)多個(gè)電子,因此QDSSCs的理論光電轉(zhuǎn)換率達(dá)到了驚人的44%,超過了單結(jié)半導(dǎo)體太陽能電池32%的傳統(tǒng)光電轉(zhuǎn)換效率[15]
隨著研究的深入,TiO2陽極材料可廣泛地應(yīng)用于QDSSCs[16]和其他類型
光伏電池中[17~21]
作為TiO2的潛在替代品,其他合適的半導(dǎo)體氧化物也受到了關(guān)注
Hossain等[22]發(fā)現(xiàn)納米結(jié)構(gòu)的SnO2比納米TiO2更有望成為QDSSCs中的光陽極材料
SnO2是一種p型寬帶隙半導(dǎo)體[23],具有比TiO2更高的電子擴(kuò)散速率[24, 25],因?yàn)槠潆娮舆w移率更高
這將使其成為QDSSCs光陽極材料的更好選擇[26]
SnO2(3.6 eV)比TiO2(3.2 eV)的帶隙更大,可以減少價(jià)帶中的氧化空穴,有利于激子的復(fù)合作用,從而提高QDSSCs的穩(wěn)定性
Pan等[27]制備的分層SnO2空心結(jié)構(gòu)的多功能光電極,用于PbS量子點(diǎn)電池中其光電轉(zhuǎn)換效率可達(dá)1.34
Lin等[23]用水熱法合成的SnO2納米粒子,結(jié)合CdS量子點(diǎn)使SnO2膜敏化后光電轉(zhuǎn)換效率達(dá)到1.78%的
Wang等[28]首次合成了粒徑可調(diào)SnO2納米球,用于QDSSCs光電轉(zhuǎn)換效率約為1.91%,隨后又將納米結(jié)構(gòu)SnO2太陽能電池光電轉(zhuǎn)換效率優(yōu)化到3.68%[29]
在復(fù)合電極薄膜中,底層的二氧化鈦與導(dǎo)電玻璃結(jié)合更緊密,在光電轉(zhuǎn)化中電子傳輸率更高[30]
本文將SnO2作為散射層與TiO2膜構(gòu)成復(fù)合電極應(yīng)用于ZnCuInSe量子點(diǎn)敏化太陽能電池中,改變光陽極膜的厚度以研究光陽極材料膜厚對(duì)電池效率的影響,并找出不同膜厚電池效率的變化趨勢(shì)從而實(shí)現(xiàn)對(duì)電池的優(yōu)化
1 實(shí)驗(yàn)方法1.1 實(shí)驗(yàn)用材料
乙酸鋅(質(zhì)量分?jǐn)?shù):99.99%)、醋酸銦、硒粉、升華硫和乙基纖維素,松油醇,醋酸鋅(質(zhì)量分?jǐn)?shù):99.99%)、十八烯胺(質(zhì)量分?jǐn)?shù):97%)和十八烯(質(zhì)量分?jǐn)?shù):90%),碘化亞銅(質(zhì)量分?jǐn)?shù):99.998%),無水乙醇,聚乙二醇
未標(biāo)注質(zhì)量分?jǐn)?shù)的化學(xué)品均為分析純,溶劑包括去離子水
1.2 SnO2 空心球的制備
參考Wang等[31]的方法(圖1),將0.25 g的SnO2·2H2O加入到乙醇(6 mL)和去離子水(60 mL)的混合溶液中,使用超聲器超聲處理5 min后再加入0.6 mL HCl,然后用磁力攪拌器攪拌1 h
將所得溶液轉(zhuǎn)移至100 mL的水熱反應(yīng)釜中在200℃保持12 h
將離心分離得到的產(chǎn)物分別用無水乙醇和去離子水充分洗滌,最后將獲得的樣品在60℃干燥過夜
圖1
圖1SnO2納米球的制備流程
Fig.1Flow chart of preparation for SnO2 nanosphere
1.3 ZnCuInSe量子點(diǎn)的合成
將乙酸鋅加入到OAm和ODE三頸燒瓶中,然后在N2中加熱得到Zn源溶液
將CuI和In(OAc)3加入含有OAm、ODE和Zn源的溶液中[32],將其加熱至150℃后加入Se源溶液(0.4 mL DPP,0.5 mL OAm和0.04 g Se粉超聲制得),隨后用配體交換程序從油相轉(zhuǎn)移到水相
在震蕩機(jī)中超聲震蕩3 min至均勻混合,然后將6 g P25粉末以少量多次的方式加入上述溶液后超聲振蕩至全溶,得到澄清透明溶液
然后向其中加入20 mL的松油醇和2.5 g的乙基纖維素乙醇溶液,超聲震蕩30 min使其充分混合,最后用旋轉(zhuǎn)蒸發(fā)儀旋蒸5 h去除溶液中的乙醇,得到白色粘稠液體即TiO2漿料
SnO2散射層漿料的制備:將1 g的SnO2粉末、0.1 g的乙基纖維素、0.2 g的聚乙二醇和5 mL乙醇置于球磨機(jī)球磨4 h,再加入0.1 g乙基纖維素和0.2 mL乙酰丙酮繼續(xù)球磨2 h,最后用旋轉(zhuǎn)蒸發(fā)儀去除乙醇得到SnO2糊劑
將SnO2糊劑絲網(wǎng)印刷到預(yù)先清潔的摻氟氧化錫導(dǎo)電玻璃(FTO)上,印刷后的有效面積為0.235 cm2
將TiO2透明層漿料和SnO2散射層漿料通過絲網(wǎng)印刷均勻地涂在潔凈的FTO玻璃上,以15 μm的TiO2透明層作為底層,控制絲網(wǎng)印刷的層數(shù)以控制SnO2散射層的膜厚,然后0.5 mL OAm和0.04 g Se粉超聲制得),隨后通過配體交換程序從油相轉(zhuǎn)移到水相
1.4 光陽極的制備和電池的組裝
TiO2透明層漿料的制備:將無水乙醇、去離子水和冰醋酸按20:5:1的量置于圓底燒瓶,放入超聲震蕩機(jī)中超聲震蕩3 min至均勻混合,再將6 g P25粉末少量多次加入上述溶液超聲振蕩至全溶,得到澄清透明溶液
向其中加入20 mL松油醇和2.5 g的乙基纖維素乙醇溶液,超聲震蕩30 min使其充分混合,最后旋蒸5 h去除溶液中的乙醇,得到白色粘稠液體即為TiO2漿料
SnO2散射層漿料的制備:將1 g 的SnO2粉末、0.1 g乙基纖維素、0.2 g聚乙二醇和5 mL乙醇置于球磨機(jī)球磨4 h,再加入0.1 g乙基纖維素和0.2 mL乙酰丙酮繼續(xù)球磨2 h,最后旋蒸去除乙醇得到SnO2糊劑
將糊劑絲網(wǎng)印刷到預(yù)先清潔的摻氟氧化錫導(dǎo)電玻璃(FTO)上,有效面積為0.235 cm2
將TiO2透明層漿料和SnO2散射層漿料絲網(wǎng)印刷均勻地涂在潔凈的FTO玻璃上,以15 μm TiO2透明層作為底層,控制絲網(wǎng)印刷的層數(shù)以控制SnO2散射層的膜厚,然后放入400℃的馬弗爐中加熱1 h,得到不同膜厚的光陽極
使用探針式表面輪廓儀測(cè)量樣品膜厚,膜厚分別為6、9 和12 μm
將制備好的ZnCuInSe量子點(diǎn)水溶液用液槍滴到復(fù)合光陽極上,每次滴加50 μL,然后在50℃靜置吸附2 h直至飽和,再依次用去離子水和乙醇沖洗干凈,最后進(jìn)行ZnS鈍化層的處理[33]
將光陽極與對(duì)電極用沙林膜封裝,從預(yù)留的縫隙注入10 μL多硫電解液,然后經(jīng)過硫化反應(yīng)在銅片表面形成Cu2S作為對(duì)電極,將已制備好的光陽極與Cu2S電極用夾子組成“三明治”結(jié)構(gòu),用
電化學(xué)工作站與太陽光模擬器測(cè)試電池的光電性能[34]
1.5 性能的測(cè)試和表征
用紫外-可見光譜儀(Lambada 950)表征吸附量子點(diǎn)的光陽極在(波長(zhǎng)范圍為500~1200 nm)可見光的響應(yīng)波段
用X射線衍射儀(D8 Advance, BRUKER AXS GMBH, 德國(guó))測(cè)試物質(zhì)的化學(xué)成分
用場(chǎng)發(fā)射掃描電子顯微鏡(Nova Nano SEM450, FEI Company) 表征材料的表面宏觀形貌,用透射電子顯微鏡(JEOL-2100)測(cè)試微觀形貌
用電化學(xué)工作站(CHI660E) 測(cè)試光伏性能和電化學(xué)阻抗,用IPCE量子效率測(cè)試儀(PTS-2-IQE) 測(cè)試入射光子的轉(zhuǎn)換效率
對(duì)材料進(jìn)行了X射線衍射(XRD)分析表征,管電壓為40 kV、管電流為40 mA,使用Cu靶Kα 射線(λ=0.15406 nm)在掃描角度范圍為10°~80°內(nèi)對(duì)37.8°
測(cè)試了不同厚度的SnO2薄膜的電流密度-電壓關(guān)系(J-V)
2 實(shí)驗(yàn)結(jié)果2.1 材料的形貌
圖2給出了SnO2納米空心球的納米級(jí)微觀形貌
圖2a給出了納米空心球的SEM照片,可見其是空心球,由大量直徑為220~240 nm的球形顆粒組成
從圖2b可見SnO2類球狀的納米顆粒,納米顆粒的平均直徑約為20~30 nm
圖2c給出了SnO2納米結(jié)構(gòu)的示意性模型,可見由類球狀納米顆粒包圍的空心SnO2球
圖2d表明納米球的晶格條紋間距為0.33 nm,對(duì)應(yīng)SnO2的(110)晶面,證明材料結(jié)晶性良好
圖2
圖2SnO2材料的SEM圖、SnO2材料的TEM照片以及SnO2材料的示意性模型
Fig.2SEM images of SnO2 (a), TEM image of SnO2 (b,d) and schematic model of SnO2 (c)
圖3給出了SnO2的XRD譜,可知出現(xiàn)特征峰值分別為26.5°、33.9°、51.7°和54.8°,分別對(duì)應(yīng)于金紅石結(jié)構(gòu)的SnO2 (PDF No.41-1445)的(101)、(200)、(211)、(220)、(002)且沒有發(fā)現(xiàn)雜質(zhì)峰,表明制備的
納米材料是SnO2且純度較高,結(jié)晶度良好,與圖2d中的TEM測(cè)試結(jié)果一致
圖3
圖3SnO2材料的XRD譜
Fig.3XRD patterns of SnO2 material
2.2 量子點(diǎn)敏化復(fù)合光陽極的光學(xué)性質(zhì)
分別測(cè)試了有散射層(TiO2-SnO2)和沒有散射層(TiO2)的量子點(diǎn)敏化復(fù)合光陽極的光學(xué)性質(zhì)
圖4給出了在波長(zhǎng)范圍為400~1000 nm內(nèi)的紫外-可見吸收光譜
可以看出,吸附ZnCuInSe量子點(diǎn)的復(fù)合光陽極以及沒有散射層的光陽極分別在900和940 nm附近出現(xiàn)起始吸收,散射層的加入使吸收范圍向長(zhǎng)波長(zhǎng)方向偏移,證實(shí)復(fù)合光陽極具有更窄的帶隙,有利于更好的光吸收而使光電轉(zhuǎn)換效率提高
復(fù)合光陽極膜的吸波能力增強(qiáng)和吸波范圍擴(kuò)大,證明SnO2散射層能為QDSSCs的沉積提供更大的附著面積和空心球結(jié)構(gòu)能促進(jìn)量子點(diǎn)形成異質(zhì)形核
這些結(jié)果表明,SnO2散射層能增強(qiáng)光陽極的吸光能力,有利于提高電池的光電轉(zhuǎn)換效率
圖4
圖4無散射層TiO2膜和有散射層TiO2-SnO2膜的紫外-可見吸收(UV-Vis)光譜
Fig.4UV-Vis curves of TiO2 film without scattering layer and TiO2-SnO2 scattering layer
2.3 光電性能
為了研究不同膜厚的SnO2薄膜對(duì)QDSSCs光伏性能的影響,進(jìn)行了電流密度-電壓(J-V)測(cè)試
填充因子(FF)、短路電流密度(Jsc)、開路電壓(Voc)和光電轉(zhuǎn)換效率(PCE)等光電參數(shù)列于表1
使用Cu2S對(duì)電極和多硫化物電解質(zhì)制備典型的夾心型太陽能電池
圖5a給出了量子點(diǎn)敏化太陽能電池的J-V特性曲線,表2列出電池的各項(xiàng)光伏參數(shù)
可以看出,只有TiO2薄膜吸附的ZnCuInSe量子點(diǎn)敏化太陽能電池,其Voc、Jsc以及FF的值分別為0.548 V、21.48 mA/cm2和0.53,光電轉(zhuǎn)換效率為6.18%
散射層的增加,使電池的電流密度和填充因子明顯提高
由表中數(shù)據(jù)可見,在6、9和12 μm三個(gè)膜厚范圍內(nèi)電池效率先提高后降低,膜厚為9 μm的電池效率達(dá)到峰值7.34%,且相應(yīng)的Voc、Jsc以及FF的值都是三者中的最優(yōu)值[35]
Table 1
表1
表1不同膜厚的光陽極散射層的光伏性能參數(shù)
Table 1Photovoltaic performance parameters of light anode scattering layers with different film thicknesses
Sample
|
Voc / V
|
Jsc / mA·cm-2
|
FF
|
PCE / %
|
15 μm TiO2
|
0.548±0.15
|
21.48±0.13
|
0.53
|
6.18
|
15 μm TiO2-6 μm SnO2
|
0.509±0.07
|
21.83±0.02
|
0.56
|
6.23
|
15 μm TiO2-9 μm SnO2
|
0.522±0.10
|
23.26±0.07
|
0.60
|
7.34
|
15 μm TiO2-12 μm SnO2
|
0.511±0.12
|
22.78±0.14
|
0.59
|
6.87
|
15 μm TiO2-9 μm SnO2-Solid
|
0.595±0.08
|
20.94±0.11
|
0.56
|
6.98
|
圖5
圖5光電性能分析示意圖
Fig.5J-V curves based on photoanodic scattering layers with different film thicknesses (a), IPCE spectra and Jsc curves (b) and Nyquist curves (c)
Table 2
表2
表2不同膜厚光陽極散射層的EIS性能參數(shù)
Table 2EIS performance parameter table of photoanode scattering layer with different film thicknesses
Sample
|
Rs / Ω·cm2
|
Rrec / Ω·cm2
|
Cμ / mF·cm-2
|
τn / ms
|
15 μm TiO2
|
4.661
|
531.7
|
0.108
|
57.42
|
15 μm TiO2-6 μm SnO2
|
4.341
|
813.1
|
0.127
|
103.26
|
15 μm TiO2-9 μm SnO2
15 μm TiO2-12 μm SnO2
|
3.091
3.936
|
1030
914.3
|
0.168
0.141
|
173.04
128.92
|
對(duì)比圖5a中的15 μm TiO2-6 μm SnO2與15 μm TiO2-9 μm SnO2兩條曲線表明,隨著膜厚的增加其FF、Jsc、Voc和PCE隨之增加
這表明,隨著樣品膜厚的增加樣品內(nèi)部的連續(xù)性變強(qiáng),入射光在光陽極內(nèi)的多次反射或折射使光程增大,增大了量子點(diǎn)與入射光接觸幾率,使電池能更有效的利用入射光子,產(chǎn)生更多的光生電子
同時(shí),TiO2-SnO2形成的同型半導(dǎo)體異質(zhì)結(jié)能有效的分離光生電子空穴對(duì)、降低光陽極內(nèi)部電子的復(fù)合率,使Jsc 增大
但是,由圖中的15 μm TiO2-9 μm SnO2與15 μm TiO2-12 μm SnO2曲線可知,光陽極的膜厚繼續(xù)增大超過優(yōu)化效果的臨界值時(shí),產(chǎn)生的負(fù)面影響從而降低電池效率
其原因是,隨著膜厚的增大光陽極薄膜晶體的缺陷增多,影響樣品結(jié)構(gòu)的連續(xù)性,增大了電池內(nèi)部的電阻(Rs),阻礙電子的傳輸,使電池的填充因子(FF)降低
同時(shí),作為光生電子空穴對(duì)復(fù)合中心的缺陷增加,使電荷的復(fù)合率的提高,從而降低電池的Jsc和效率
對(duì)四種不同膜厚的光陽極進(jìn)行入射光子-電子轉(zhuǎn)換效率(IPCE)測(cè)試,并對(duì)相應(yīng)的IPCE積分得到電流密度(Jsc),將曲線擬合得到圖5b
圖5b反映了不同波長(zhǎng)太陽光的光電轉(zhuǎn)換能力
四種曲線呈不規(guī)則梯形,相應(yīng)的積分Jsc與由J-V得到的Jsc基本吻合
對(duì)太陽能電池電流的積分Jsc分別為21.48、21.84、23.26和22.78 mA·cm-2,與J-V測(cè)試得到的結(jié)果大致相同[36]
可以看出,電池的光響應(yīng)范圍相對(duì)于光陽極的吸收范圍(圖5a)均有些偏移,源于SnO2散射層中較大顆粒(220~240 nm)的光散射效應(yīng)[27]
增加實(shí)心SnO2球在相同條件下的測(cè)試結(jié)果表明,空心結(jié)構(gòu)的SnO2更有利于電解液的存儲(chǔ)和氧化還原反應(yīng)
由圖5b可見,與不加散射層的電池相比,加散射層的樣品電池其IPCE譜線的光吸收范圍更寬和峰值最高,最高值可達(dá)到77%
同時(shí),光電轉(zhuǎn)換效率呈現(xiàn)先增加后減小的趨勢(shì)
這表明,在散射層增加的過程中膜厚超過閾值使傳輸電子速率降低,導(dǎo)致其電流減小從而影響光電轉(zhuǎn)換效率
分析電化學(xué)阻抗(EIS),可得到電池內(nèi)部各項(xiàng)電阻的性能參數(shù)[37],EIS測(cè)試可給出膜厚的變化對(duì)光陽極的界面電子遷移和復(fù)合特性變化的影響
圖5c給出了不同膜厚的量子點(diǎn)敏化太陽能電池的奈奎斯特曲線及其等效電路圖,表2總結(jié)了各項(xiàng)阻抗參數(shù)的測(cè)試數(shù)據(jù)
從圖5c可以看出,不同電池組的奈奎斯特曲線均由兩個(gè)半圓組成
高頻(100 kHz~100 Hz)區(qū)域內(nèi)的第一個(gè)小半圓反映電池的對(duì)電極與多硫電解液界面處的阻抗(RCE),第二個(gè)大半圓顯示在中頻(10 Hz~100 Hz)區(qū)域內(nèi)量子點(diǎn)敏化后的光陽極與電解液界面處的阻抗(Rrec)
中頻區(qū)的半圓半徑越大則Rrec越大,表明光陽極和電解液界面處的光生電子空穴對(duì)的復(fù)合率越小越有利于減小光生電子向外電路的傳輸損耗
圖中的膜厚為9 μm時(shí)半圓半徑最大,散射層電池的Rrec最大,從而說明其光陽極電解液界面處光生電子損耗最小
從表2可以看出,15 μm TiO2-9 μm SnO2樣品電池的串聯(lián)電阻(Rs)值最小,因此從Rs和Rrec可以看出其對(duì)應(yīng)的填充因子(FF)最大
光生電子壽命為
μτn=Rrec×Cμ
式中,μCμ為光催化劑的介電常數(shù)
這表明,Rrec越大則光生電子壽命越長(zhǎng)
由表2可得15 μm TiO2、15 μm TiO2-6 μm SnO2、15 μm TiO2-9 μm SnO2和15 μm TiO2-12 μm SnO2量子點(diǎn)電池的τn分別為57.42、103.26、173.04、128.92 ms,可見15 μm TiO2-9 μm SnO2對(duì)應(yīng)的QDSSCs的電子壽命最長(zhǎng)
3 結(jié)論
(1) 將用一步水熱法制備的SnO2散射層用于QDSSCs,即在TiO2表面加入SnO2散射層對(duì)電池的優(yōu)化效果顯著,可延長(zhǎng)光陽極中的光生電子壽命,減小Rs且能增加Rrce,從而提高FF和電池的效率
(2) 光陽極膜的最佳厚度為散射層9 μm,透明層15 μm,此時(shí)光電轉(zhuǎn)換效率最高
(3) 過厚的膜易使光陽極龜裂而影響電子傳輸速率,太薄的膜影響量子點(diǎn)的吸收、入射光子的傳輸以及電解質(zhì)的滲透和接觸
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Zaban A, Mi?i?O I, Gregg B A, et al.
Photosensitization of nanoporous TiO2 electrodes with InP quantum dots
[J]. Langmuir, 1998, 14: 3153
DOIURL [本文引用: 1]
[2]
Zhou B, Li Y Y, Zou Y Q, et al.
Platinum modulates redox properties and 5-hydroxymethylfurfural adsorption kinetics of Ni(OH)2 for biomass upgrading
[J]. Angew. Chem. Int. Ed., 2021, 60: 22908
DOIURL [本文引用: 1]
[3]
Ramya M, Nideep T K, Nampoori V P N, et al.
The impact of ZnO nanoparticle size on the performance of photoanodes in DSSC and QDSSC: a comparative study
[J]. J. Mater. Sci: Mater. Electron., 2021, 32: 3167
DOI [本文引用: 1]
[4]
Peng Y C, Fu G S.
Approach to quantum dot solar cells
[J]. Chin. J. Mater. Res., 2009, 23: 449
彭英才, 傅廣生.
量子點(diǎn)太陽電池的探索
[J]. 材料研究學(xué)報(bào), 2009, 23: 449
" />
The simultaneous epitaxial growth of vertical nanorod arrays and thin films of zinc oxide (ZnO) was realized on a gold-plated plane sapphire substrate via a simple chemical vapor deposition method. In this nanostructure, the vertical single crystal nanorods are hexagonal prism or cylindrical in shape, and are all grown on a ZnO thin film, so that the vertical nanorods are connected to each other through the beneath thin oxide ZnO film. In comparison with ZnO nanofilms, the prepared nanostructure has excellent photoelectrochemistry (PEC) performance with an incident photocurrent efficiency of 2.4 times that of the simple ZnO nanofilms; while its light energy conversion efficiency is 5 times that of ZnO nanofilms. Its excellent PEC performance can be attributed to its high surface area-to-volume ratio and the carrier transport channel provided by the supporter ZnO film. The mechanism for cooperative growth of ZnO nanorod arrays and thin films was proposed as follows: during the processing, Au liquefies and absorbs Zn atoms in the atmosphere forming alloys. After the alloy droplets were supersaturated ZnO begins to nucleate, and then ZnO film formed on the surface of the substrate. At the same time, Zn autocatalyzed (vapor-solid)VS growth and Au catalyzed (vapor-liquid-solid)VLS growth occurred, respectively forming hexagonal prism nanorods and cylindrical nanorods, and finally a vertical nanorod array was connected through the underneath thin ZnO film.
熊庭輝, 蔡文漢, 苗 雨 等.
ZnO納米棒陣列和薄膜的同步外延生長(zhǎng)及其光電化學(xué)性能
[J]. 材料研究學(xué)報(bào), 2022, 36: 481
DOI
使用化學(xué)氣相沉積法在a面藍(lán)寶石襯底上同步外延生長(zhǎng)氧化鋅(ZnO)豎直納米棒陣列和薄膜,研究了陣列和薄膜的光電化學(xué)性能
結(jié)果表明,納米結(jié)構(gòu)中的豎直單晶納米棒有六棱柱形和圓柱形,其底部ZnO薄膜使豎直納米棒互相聯(lián)通
與ZnO納米薄膜的比較表明,這種納米結(jié)構(gòu)具有優(yōu)異的光電化學(xué)性能,其入射光電流效率是ZnO納米薄膜的2.4倍;光能轉(zhuǎn)化效率是ZnO納米薄膜的5倍
這種納米結(jié)構(gòu)優(yōu)異的光電化學(xué)性能,可歸因于其高表面積-體積比以及其底部薄膜提供的載流子傳輸通道
本文分析了這種納米結(jié)構(gòu)的生長(zhǎng)過程,提出了協(xié)同生長(zhǎng)機(jī)理:Au液化吸收氣氛中的Zn原子生成合金,合金液滴過飽和后ZnO開始成核,隨后在襯底表面生成了ZnO薄膜
同時(shí),還發(fā)生了Zn自催化的氣-固(VS)生長(zhǎng)和Au催化的氣-液-固(VLS)生長(zhǎng),分別生成六棱柱納米棒和圓柱形納米棒,制備出底部由薄膜連接的豎直納米棒陣列
[6]
Song B, Cheng K, Wu C, et al.
Synthesis and their optical characterizations of CdS quantum dots
[J]. Chin. J. Mater. Res., 2009, 23: 89
宋 冰, 程 珂, 武 超 等.
CdS量子點(diǎn)的制備和光學(xué)性質(zhì)
[J]. 材料研究學(xué)報(bào), 2009, 23: 89
[7]
Chen G Z, Chen P, Xu D W, et al.
Preparation and microwave absorbtion performance of composite hollow carbon/Fe3O4 magnetic quantum dots
[J]. Chin. J. Mater. Res., 2022, 36: 29
[本文引用: 1]
陳冠震, 陳 平, 徐東衛(wèi) 等.
中空碳/Fe3O4磁性量子點(diǎn)
復(fù)合材料的制備及其吸波性能
[J]. 材料研究學(xué)報(bào), 2022, 36: 29
DOI [本文引用: 1]
將二氧化硅作為模板,通過原位聚合-溶劑熱-煅燒工藝合成中空碳/Fe<sub>3</sub>O<sub>4</sub>磁性量子點(diǎn)復(fù)合材料,通過改變硝酸鐵的添加量即相對(duì)碳含量來調(diào)控復(fù)合材料的電磁參數(shù)從而調(diào)節(jié)其微波吸收性能
使用掃描電鏡(SEM)、透射電鏡(TEM)表征了材料的結(jié)構(gòu)和形貌,用拉曼光譜表征了材料的內(nèi)部結(jié)構(gòu)缺陷和相對(duì)石墨化程度,使用X射線晶體衍射(XRD)、X射線光電子能譜(XPS)表征了材料的晶體結(jié)構(gòu)和化學(xué)組成
結(jié)果表明,厚度為2.55 mm的材料具有7.06 GHz的最大有效吸收帶寬(EAB),最小反射損耗值(RL<sub>min</sub>)可以達(dá)到-43 dB
這種材料優(yōu)異的微波吸收性能,主要源自于其電磁匹配特性以及介電-磁損耗的協(xié)同作用
[8]
Archana T, Sreelekshmi S, Subashini G, et al.
The effect of graphene quantum dots/ZnS co-passivation on enhancing the photovoltaic performance of CdS quantum dot sensitized solar cells
[J]. Int. J. Energy Res., 2021, 45: 15879
DOIURL [本文引用: 1]
[9]
Du Z L, Pan Z X, Fabregat-Santiago F, et al.
Carbon counter-electrode-based quantum-dot-sensitized solar cells with certified efficiency exceeding 11%
[J]. J. Phys. Chem. Lett., 2016, 7: 3103
DOIPMID [本文引用: 1] " />
用層層自組裝法制備一種M-TCPP(M=Ni、Fe)薄膜,然后原位硒化制備出MSe<sub>2</sub>和氮摻雜碳的復(fù)合透明膜(MSe<sub>2</sub>@NCF),將其用作對(duì)電極并結(jié)合鈷電解質(zhì)的特點(diǎn)制備了雙面DSSC
對(duì)MSe<sub>2</sub>@NCF的形貌、結(jié)構(gòu)和電化學(xué)性能進(jìn)行表征,并探討了從正面和背面輻射DSSC時(shí)電池的電荷傳輸路線和光伏性能的區(qū)別
結(jié)果表明,NiSe<sub>2</sub>@NCF具有可與Pt相媲美的催化活性,用其組裝的雙面DSSC從正面輻射和背面輻射其PCE分別為8.19%和6.02%,與用Pt電極組裝DSSC的PCE(8.46%和6.23%)接近
[13]
Chang J F, Xiao Y, Luo Z Y, et al.
Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production
[J]. Acta Phys.-Chim. Sin., 2016, 32: 1556
DOIURL [本文引用: 1]
常進(jìn)法, 肖 瑤, 羅兆艷 等.
水電解制氫非貴金屬催化劑的研究進(jìn)展
[J]. 物理化學(xué)學(xué)報(bào), 2016, 32: 1556
[本文引用: 1]
[14]
Wang W, Feng W L, Du J, et al.
Cosensitized quantum dot solar cells with conversion efficiency over 12%
[J]. Adv. Mater., 2018, 30: 1705746
DOIURL [本文引用: 1]
[15]
Carey G H, Abdelhady A L, Ning Z J, et al.
Colloidal quantum dot solar cells
[J]. Chem. Rev., 2015, 115: 12732
DOIPMID [本文引用: 1]
[16]
Tian J J, Cao G Z.
Design, fabrication and modification of metal oxide semiconductor for improving conversion efficiency of excitonic solar cells
[J]. Coord. Chem. Rev., 2016, 320-321: 193
DOIURL [本文引用: 1]
[17]
Wu C P, Xie K X, He J P, et al.
SnO2 quantum dots modified N-doped carbon as high-performance anode for lithium ion batteries by enhanced pseudocapacitance
[J]. Rare Met., 2021, 40: 48
DOI [本文引用: 1]
[18]
Wei Z P, Liu M N, Li H G, et al.
SnO2 quantum dots decorated reduced graphene oxide nanosheets composites for electrochemical supercapacitor applications
[J]. Int. J. Electrochem. Sci., 2020, 15: 6257
DOIURL
[19]
Xu Z M, Guan P Y, Younis A, et al.
Manipulating resistive states in oxide based resistive memories through defective layers design
[J]. RSC Adv., 2017, 7: 56390
DOIURL
[20]
Yan X B, Pei Y F, Chen H W, et al.
Self-assembled networked PbS distribution quantum dots for resistive switching and artificial synapse performance boost of memristors
[J]. Adv. Mater., 2019, 31: 1805284
DOIURL
[21]
Ren Z W, Wang J, Pan Z X, et al.
Amorphous TiO2 buffer layer boosts efficiency of quantum dot sensitized solar cells to over 9%
[J]. Chem. Mater., 2015, 27: 8398
DOIURL [本文引用: 1]
[22]
Hossain A, Koh Z Y, Wang Q.
PbS/CdS-sensitized mesoscopic SnO2 solar cells for enhanced infrared light harnessing
[J]. Phys. Chem. Chem. Phys., 2012, 14: 7367
DOIPMID [本文引用: 1] " />
The explosive increase in digital communications in the Big Data and internet of Things era spurs the development of universal memory that can run at high speed with high-density and nonvolatile storage capabilities, as well as demonstrating superior mechanical flexibility for wearable applications. Among various candidates for the next-generation information storage technology, resistive switching memories distinguish themselves with low power consumption, excellent downscaling potential, easy 3D stacking, and high CMOS compatibility, fulfilling key requirements for high-performance data storage. Employing organic and hybrid switching media in addition allows light weight and flexible integration of molecules with tunable device performance via molecular design-cum-synthesis strategy. In this review, we present a timely and comprehensive review of the recent advances in organic and hybrid resistive switching materials and devices, with particular attention on their design principles for electronic property tuning and flexible device performance. The current challenges posed with development of organic and hybrid resistive switching materials and flexible memory devices, together with their future perspectives, are also discussed.
[26]
Kim E K, Bui H T, Shrestha N K, et al.
An enhanced electrochemical energy conversion behavior of thermally treated thin film of 1-dimensional CoTe synthesized from aqueous solution at room temperature
[J]. Electrochim. Acta, 2018, 260: 365
DOIURL [本文引用: 1]
[27]
Pan Z X, Zhao K, Wang J, et al.
Near infrared absorption of CdSe x Te1- x alloyed quantum dot sensitized solar cells with more than 6% efficiency and high stability
[J]. ACS Nano, 2013, 7: 5215
DOIURL [本文引用: 2]
[28]
Hossain A, Yang G W, Parameswaran M, et al.
Mesoporous SnO2 spheres synthesized by electrochemical anodization and their application in CdSe-sensitized solar cells
[J]. J. Phys. Chem. C, 2010, 114: 21878
DOIURL [本文引用: 1]
[29]
Hossain A, Jennings J R, Koh Z Y, et al.
Carrier generation and collection in CdS/CdSe-sensitized SnO2 solar cells Exhibiting unprecedented photocurrent densities
[J]. ACS Nano, 2011, 5: 3172
DOIPMID [本文引用: 1] " />
The enhancement of power conversion efficiency (PCE) and the development of toxic Cd-, Pb-free quantum dots (QDs) are critical for the prosperity of QD-based solar cells. It is known that the properties (such as light harvesting range, band gap alignment, density of trap state defects, etc.) of QD light harvesters play a crucial effect on the photovoltaic performance of QD based solar cells. Herein, high quality ~4 nm Cd-, Pb-free Zn-Cu-In-Se alloyed QDs with an absorption onset extending to ~1000 nm were developed as effective light harvesters to construct quantum dot sensitized solar cells (QDSCs). Due to the small particle size, the developed QD sensitizer can be efficiently immobilized on TiO2 film electrode in less than 0.5 h. An average PCE of 11.66% and a certified PCE of 11.61% have been demonstrated in the QDSCs based on these Zn-Cu-In-Se QDs. The remarkably improved photovoltaic performance for Zn-Cu-In-Se QDSCs vs Cu-In-Se QDSCs (11.66% vs 9.54% in PCE) is mainly derived from the higher conduction band edge, which favors the photogenerated electron extraction and results in higher photocurrent, and the alloyed structure of Zn-Cu-In-Se QD light harvester, which benefits the suppression of charge recombination at photoanode/electrolyte interfaces and thus improves the photovoltage.
[33]
Wang W R, Jiang G C, Yu J, et al.
High efficiency quantum dot sensitized solar cells based on direct adsorption of quantum dots on photoanodes
[J]. ACS Appl. Mater. Interfaces, 2017, 9: 22549
DOIURL [本文引用: 1]
[34]
Peng W X, Du J, Pan Z X, et al.
Alloying strategy in Cu-In-Ga-Se quantum dots for high efficiency quantum dot sensitized solar cells
[J]. ACS Appl. Mater. Interfaces, 2017, 9: 5328
DOIURL [本文引用: 1]
[35]
Liu Z Q, Cheng D F, Zhu Y L, et al.
Robust bifunctional phosphorus-doped perovskite oxygen electrode for reversible proton ceramic electrochemical cells
[J]. Chem. Eng. J., 2022, 450: 137787
DOIURL [本文引用: 1]
[36]
Tachibana Y, Hara K, Sayama K, et al.
Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells
[J]. Chem. Mater., 2002, 14: 2527
DOIURL [本文引用: 1]
[37]
Sacco A.
Electrochemical impedance spectroscopy: fundamentals and application in dye-sensitized solar cells
[J]. Renewable Sustainable Energy Rev., 2017, 79: 814
DOIURL [本文引用: 1]
Photosensitization of nanoporous TiO2 electrodes with InP quantum dots
1
1998
聲明:
“SnO2 作散射層的光陽極膜厚對(duì)量子點(diǎn)染料敏化太陽能電池光電性能的影響” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)