具有NASICON結(jié)構(gòu)的Na3V2(PO4)3 (NVP)離子電導(dǎo)率高、體積變形小、理論比能量高(400 Wh/kg)和
電化學(xué)穩(wěn)定性高,是
鈉離子電池正極的候選材料之一[1~3]
但是,NVP較低的本征電子電導(dǎo)率使其倍率性能和循環(huán)性能不高
降低顆粒尺寸、摻雜和碳包覆,可提高其導(dǎo)電性[4]
為了制備小尺寸的NVP顆粒,可用溶膠–凝膠法[5]、水熱法[6]、噴霧干燥法[7,8]和溶液燃燒合成(Solution combustion synthesis,SCS)[9~12]等液相法,調(diào)節(jié)工藝參數(shù)可控制其形貌和尺寸
SCS是一種簡單、快速、高效的液相制備方法
Wang等[9]用SCS合成的碳包覆NVP鈉離子電池
正極材料,在0.1 C下的初始充放電比容量分別為111和101 mAh·g–1,循環(huán)50圈后的容量保持率為95%
但是,SCS的反應(yīng)過程難以控制且產(chǎn)物易發(fā)生團(tuán)聚
超聲技術(shù)是一種能強(qiáng)化化學(xué)反應(yīng)和化工過程的物理手段,可用于輔助制備
納米材料[13~15]
超聲的力學(xué)效應(yīng)和空化效應(yīng)不僅能促進(jìn)反應(yīng)的進(jìn)行,還能有效阻止顆粒的團(tuán)聚和長大[16]
將超聲技術(shù)引入SCS過程,可合成碳包覆NVP[17]
超聲的引入使用傳統(tǒng)SCS合成的塊狀團(tuán)聚體轉(zhuǎn)變成富含孔洞的3D網(wǎng)絡(luò)結(jié)構(gòu),還能降低NVP的晶粒尺寸(<20 nm)
這種材料在0.1 C下的比容量可提高到117 mAh·g–1,在2 C下的比容量為85 mAh·g–1,在0.2 C下循環(huán)120次后保持初始容量的94%
但是在SCS過程中生成的碳為無定形碳,不能將NVP顆粒完全包覆也不能在NVP顆粒之間建立連續(xù)的三維導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu)
石墨烯是一種比表面積較大的納米碳材料,具有良好的導(dǎo)電性和優(yōu)良的機(jī)械性能,是很有前途的導(dǎo)電碳材料[18~22]
將大表面的石墨烯摻入NVP中可將NVP顆粒聯(lián)結(jié)起來構(gòu)建連續(xù)的電子三維通道從而提高NVP的導(dǎo)電性
為了進(jìn)一步提高超聲輔助溶液燃燒合成的NVP的導(dǎo)電性從而提高其倍率性能和循環(huán)性能,本文用超聲輔助溶液燃燒法合成
硬碳和石墨烯雙層碳包覆的NVP
復(fù)合材料,研究添加石墨烯對其組織結(jié)構(gòu)和電化學(xué)性能的影響
1 實(shí)驗(yàn)方法1.1 雙層碳包覆NVP的制備
用Hummers法[23,24]制備氧化石墨烯(GO)納米片
雙層碳包覆NVP的制備:將2.55 g硝酸鈉(NaNO3)、3.45 g的磷酸二氫氨(NH4H2PO4)、2.34 g偏礬酸銨(NH4VO3)和8.45 g檸檬酸(C6H8O7)溶解在去離子水,得到100 mL澄清的前驅(qū)體溶液
在前驅(qū)體溶液中加入GO(添加量分別為0.0%、2.5%、5.0%)并超聲2 h,然后將裝有前驅(qū)體溶液的坩堝放到溫度為500℃的電阻爐內(nèi),將超聲桿的頂端浸入前驅(qū)體溶液中并開啟超聲
在超聲場和溫度場的作用下溶液沸騰、蒸發(fā)、濃縮和燃燒,得到蓬松的前驅(qū)體粉末
將前驅(qū)體粉末在Ar+H2(H2的體積比為5%)氣氛中熱處理,在800℃保溫4 h后得到碳包覆NVP復(fù)合材料
1.2 樣品性能的表征
用X' Pert PRO型X射線衍射儀表征材料的物相,Cu靶,Kα 射線源(λ=0.15418 nm),電壓和電流分別為40 kV和40 mA,掃描速度為10 (°)/min,掃描范圍2θ為10°~60°
用LabRAM HR800型拉曼光譜分析儀測試Raman譜(使用波長為532 nm的激光,波數(shù)范圍為1000~2000 cm–1)
用Nova NanoSEM 450掃描電鏡和Tecnai G2 F30透射電子顯微鏡觀察樣品的微觀形貌、顆粒尺寸和碳包覆
用3H-2000PM1型比表面積分析儀測試粉末的N2吸附-脫附性能
按質(zhì)量比8:1:1的比例將活性物質(zhì)碳包覆Na3V2(PO4)3、科琴黑和聚偏氟乙烯(PVDF)混合后研磨使之均勻,加入適量的N-甲基吡咯烷酮(NMP)繼續(xù)研磨后得到混合均勻的漿料
將漿料均勻地涂覆在鋁箔表面在80℃干燥12 h,然后用壓片機(jī)壓實(shí)并切成直徑為8 mm的小圓片作為正極
在充滿Ar氣的手套箱內(nèi)組裝CR2032型扣式電池(水和氧的含量均小于1×10–6,體積分?jǐn)?shù)),其中對電極和參考電極為金屬鈉片,隔膜為玻璃纖維,電解液為含有1 mol·L–1 NaClO4的EC+PC溶液(其中EC、PC的體積比為1:1)
在室溫下(25℃)測試電池的電化學(xué)性能,包括電化學(xué)阻抗(使用CHI600D型電化學(xué)工作站)、恒流充放電性能(使用CT2001A型Land電池測試系統(tǒng))
對于Na3V2(PO4)3/C/GO電極,充放電電壓區(qū)間為2.3~3.9V,以1C電流密度測試充放電循環(huán)性能,測試周期為300圈
在1、2、5、10 C的電流密度(1C=117 mAh·g–1)下測試倍率性能,在每種電流密度下循環(huán)5圈
2 結(jié)果和討論2.1 NVP的組織結(jié)構(gòu)
圖1給出了GO添加量不同的碳包覆NVP的XRD譜
可以看出,GO添加量不同的樣品其衍射峰位和相對強(qiáng)度相似,衍射峰與NVP的JCPDS No: 53-0018相符合,表明三種樣品均為結(jié)晶性良好的NVP
在XRD譜中未觀察到GO的衍射峰,表明GO以納米片無序堆疊的形式存在[25]
可用Scherrer公式
D=Kλ/Bcosθ
計(jì)算粉末的平均晶粒尺寸,其中D為樣品的晶粒垂直于晶面方向的平均厚度(nm),K為Scherrer常數(shù)(0.89),B為試樣寬化(實(shí)測樣品最強(qiáng)衍射峰對應(yīng)的半峰寬扣除儀器固有寬化),θ為最強(qiáng)衍射峰對應(yīng)的衍射角,λ為X-射線波長0.15418 nm
以(116)晶面計(jì)算的結(jié)果表明,添加GO含量分別為0.0%、2.5%和5.0%的NVP其晶粒尺寸分別為16.6 nm、16.9 nm、17.0 nm,相差不大
圖1
圖1碳包覆NVP的XRD譜
Fig.1XRD patterns of carbon-coated NVP
將前驅(qū)體溶液加熱至沸點(diǎn)(500℃),沸騰時(shí)溶劑揮發(fā),溶液濃縮,濃縮到一定程度溶質(zhì)開始分解
達(dá)到點(diǎn)燃時(shí)溶液燃燒發(fā)生氧化還原反應(yīng),其中硝酸鹽為氧化劑,檸檬酸為還原劑
三種實(shí)驗(yàn)現(xiàn)象相似
結(jié)合XRD譜的結(jié)果表明,GO的加入未改變?nèi)紵铣煞磻?yīng)
圖2給出了自制GO和GO添加量不同的NVP的拉曼譜
可以看出,在三個(gè)NVP樣品的譜里都出現(xiàn)了碳的兩個(gè)特征峰,分別位于1300 cm–1(D峰)和1600 cm–1(G峰)附近,與無定形碳和石墨化碳對應(yīng)
未加入GO的樣品其G峰并不明顯,表明在SCS過程中生成的碳主要為無定形態(tài)
隨著GO添加量的增加G峰變得顯著,表明出現(xiàn)了石墨烯
根據(jù)峰面積計(jì)算出比值ID/IG,得到GO含量為0.0%、2.5%和5.0%三個(gè)樣品的ID/IG值分別為2.1、1.5和1.3,表明C的有序度提高了
圖2
圖2碳包覆NVP的拉曼譜
Fig.2Raman spectra of carbon-coated NVP
圖3給出了自制石墨烯納米片的TEM照片
可見納米片的尺寸約為幾個(gè)微米到十幾個(gè)微米,厚度約為幾個(gè)納米
圖4給出了GO添加量不同的NVP的SEM照片
可以看出,三種產(chǎn)物均由團(tuán)聚顆粒組成,每個(gè)團(tuán)聚顆粒都具有均勻的三維孔結(jié)構(gòu),孔徑為1~5 μm
但是從圖4右上角的插圖可見,NVP團(tuán)聚顆粒的次級結(jié)構(gòu)不同
不添加GO的NVP團(tuán)聚顆粒具有珊瑚結(jié)構(gòu),因?yàn)榇渭夘w粒相互聯(lián)結(jié)形成珊瑚結(jié)構(gòu);GO添加量為2.5%時(shí)珊瑚結(jié)構(gòu)變少,而分散的顆粒增多;隨著GO的添加量增加到5.0%珊瑚結(jié)構(gòu)基本消失,團(tuán)聚顆粒由分散的小顆粒和一些片狀顆粒組成,分別是NVP顆粒和石墨烯
圖3
圖3石墨烯納米片的TEM照片
Fig.3TEM image of graphene nanosheets
圖4
圖4GO添加量不同的碳包覆NVP的SEM照片
Fig.4SEM images of carbon-coated NVP (a) 0.0%; (b) 2.5%; (c) 5.0%
用HRTEM進(jìn)一步觀察碳包覆NVP的顯微結(jié)構(gòu),結(jié)果在圖5中給出
從圖5a可見,不添加GO時(shí)NVP顆粒相互聯(lián)結(jié),宏觀上表現(xiàn)出珊瑚結(jié)構(gòu)
圖5d中的高倍TEM照片清楚地顯示出晶格條紋,晶格間距為0.217 nm,對應(yīng)NVP的(306)晶面
同時(shí),在晶粒表面還觀察到了厚度為1~2 nm的無定形碳薄層
其原因是,在溶液燃燒過程中以C6H8O7作為燃燒反應(yīng)的還原劑和各金屬離子的絡(luò)合劑,在燃燒過程中富余的C6H8O7分解后在NVP表面形成了C包覆層
由圖5b可見,GO添加量為2.5%時(shí)大部分NVP顆粒不再彼此聯(lián)結(jié)
從圖5e中的高倍TEM照片可觀察到晶粒表面包覆著雙層碳,內(nèi)層是厚度為1~2 nm的無定形碳,外層是厚度為2~3 nm的GO
由圖5c可見,隨著GO的添加量增加到5.0% NVP顆粒趨近于球形,平均顆粒尺寸約為25 nm,分散在層片狀GO上
圖5f表明,NVP晶粒表面仍然具有雙層碳結(jié)構(gòu),內(nèi)層是厚度為1~2 nm的無定形碳,外層GO的厚度為4~5 nm
由此可見,GO含量的提高使GO層的厚度增大
圖5
圖5GO添加量不同的NVP的HRTEM圖
Fig.5HRTEM images of NVP with different GO contents (a, d) 0.0%; (b, e) 2.5%; (c, f) 5.0%
在超聲輔助溶液燃燒過程中,前驅(qū)體溶液內(nèi)產(chǎn)生了大量的、均勻分布的空化泡
超聲引起的力學(xué)效應(yīng),有助于小氣泡在流體介質(zhì)中的均勻分散
因此,燃燒后合成的產(chǎn)物具有均勻的蜂窩結(jié)構(gòu),燃燒產(chǎn)物熱處理后這些蜂窩結(jié)構(gòu)形成均勻的三維網(wǎng)絡(luò)結(jié)構(gòu)[17]
另外,石墨烯具有大的比表面積,為NVP晶核的形成提供大量的形核點(diǎn)并抑制NVP晶粒的長大
因此,石墨烯的加入可阻止顆粒的團(tuán)聚,使顆粒均勻分布
圖6給出了GO添加量不同的碳包覆NVP的N2吸-脫附等溫曲線及孔徑分布
由圖6可見,隨著GO添加量的增加產(chǎn)物的比表面積增大,分別為3.05、5.49、8.74 m2·g–1
孔徑分布表明,GO添加量增加至5%,產(chǎn)物中尺寸為~2nm的微孔和~30nm的介孔的體積明顯增多
其原因,一方面,超聲產(chǎn)生的空化效應(yīng)有助于介孔和微孔的形成;另一方面,石墨烯的比表面積大且易卷曲,也有助于增大產(chǎn)物表面積和形成更多的介孔和微孔
圖6
圖6GO添加量不同的NVP的N2吸/脫附等溫曲線(內(nèi)嵌為孔徑分布圖)
Fig.6Nitrogen adsorption/desorption isotherms of NVP with different GO contents. Inset: the pore-size distribution plot calculated by the BJH method in the adsorption branch isotherm
2.2 NVP的電化學(xué)性能
圖7給出了不同GO添加量的NVP的電化學(xué)阻抗奈奎斯特圖
每個(gè)奈奎斯特圖都由一個(gè)位于中高頻區(qū)的半圓和一條位于低頻區(qū)的斜線組成
半圓表示電解質(zhì)和電極之間的電荷轉(zhuǎn)移電阻(Rct),斜線表示鈉離子擴(kuò)散引起的Warburg電阻
根據(jù)圖7中的插圖的等效電路可以得到GO含量為0.0%、2.5%和5.0%的NVP其Rct分別為848、485和201 Ω·cm2
GO為5.0%的NVP阻抗最低,因?yàn)樽銐虻腉O使分散的NVP顆粒彼此連接,為電子傳輸構(gòu)建起三維通道,有助于提高NVP的動(dòng)力學(xué)特性
圖7
圖7GO添加量不同的NVP的電化學(xué)阻抗奈奎斯特圖
Fig.7Electrochemical impedance spectroscopy with different GO contents
圖8a給出了GO添加量不同的NVP在1 C電流密度下的充放電曲線,電壓窗口為2.3~3.9 V
可以看出,三種電極材料的充/放電曲線在3.4V左右均有一個(gè)平臺,對應(yīng)V3+/4+的轉(zhuǎn)變
圖8b給出了碳包覆NVP充放電的循環(huán)性能圖(1C的電流密度)
GO含量為0.0%的NVP樣品其初始比容量為99 mAh·g–1,循環(huán)120圈后比容量衰減到23 mAh·g–1
GO含量為2.5%的NVP樣品其初始比容量為104 mAh·g–1,循環(huán)240圈后比容量衰減到70 mAh·g–1,容量保持率為67%
GO含量為5.0%的樣品其初始比容量為117 mAh·g–1,與NVP的理論比容量接近
循環(huán)300圈后,比容量仍高達(dá)93 mAh·g–1,容量保持率為79%
圖8c給出了GO含量為5.0%的NVP的庫倫效率曲線,可見其首效為83%,5次循環(huán)后庫倫效率接近100%
這表明,NVP的結(jié)構(gòu)穩(wěn)定,硬碳和石墨烯所構(gòu)成的三維導(dǎo)電網(wǎng)絡(luò)有利于NVP的氧化還原反應(yīng),從而增強(qiáng)其電化學(xué)循環(huán)穩(wěn)定性
圖8d給出了石墨烯添加量不同的NVP的倍率性能
在各個(gè)倍率下,GO添加量為5.0%的NVP的比容量最優(yōu)
GO含量為5.0%的樣品在不同倍率下的首次放電比容量分別為117 mAh·g–1(1 C)、112 mAh·g–1(2 C)、108 mAh·g–1(5 C)、100 mAh·g–1(10 C),相應(yīng)倍率下的比容量保持率分別為98%、95%、88%
這些結(jié)果表明,該樣品作為正極材料有很好的倍率性能,特別是在大倍率下電池依然具有較高的比容量
圖8
圖8GO添加量不同的NVP的電化學(xué)性能
Fig.8Electrochemical performance of NVP with different GO contents (a) charge-discharge profiles at 1 C; (b) cycling performance at 1 C; (c) coulombic efficiency of NVP (GO: 5.0%) at 1 C; (d) rate capability at various current rates from 1 C to 10 C
比較上述的電化學(xué)性能,GO添加量為5.0%的NVP具有良好的電化學(xué)性能
其原因是:(1)超聲輔助SCS過程及石墨烯的協(xié)同作用有助于高分散NVP納米顆粒的生成,納米尺寸的NVP顆粒有較小的Na+的遷移路徑,有利于Na+的高速脫嵌
(2)在SCS過程中生成的無定形碳包覆在NVP顆粒表面,促進(jìn)了電子轉(zhuǎn)移并能阻止NVP和電解液直接接觸,有利于提高界面穩(wěn)定性
(3)大片石墨烯連接納米NVP顆粒,為電子傳輸構(gòu)建起三維通道
因此,無定形碳和石墨烯的共同作用使NVP的導(dǎo)電性提高
3 結(jié)論
采用超聲輔助溶液燃燒合成技術(shù)可制備雙層碳包覆NVP復(fù)合材料,其顆粒表面由內(nèi)向外包覆著無定形碳和石墨烯
添加石墨烯有助于形成豐富的多級孔結(jié)構(gòu),并提高NVP顆粒的分散性和降低其尺寸
石墨烯添加量為5.0%的GO和硬碳為NVP顆粒的電子傳輸構(gòu)建起了三維通道,使材料的電化學(xué)性能提高
在1 C倍率下充放電,NVP的初始比容量有117 mAh·g-1,循環(huán)300圈后容量保持率為79%,在10 C倍率下放電比容量高達(dá)100 mAh·g-1
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Saravanan K, Mason C W, Rudola A, et al.
The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries
[J]. Adv. Energy Mater., 2013, 3(4): 444
DOIURL [本文引用: 1]
[2]
Song W X, Ji X B, Wu Z P, et al.
First exploration of Na-ion migration pathways in the NASICON structure Na3V2(PO4)3
[J]. J. Mater. Chem., 2014, 2A(15) : 5358
[3]
Jian Z L, Han W Z, Lu X, et al.
Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries
[J]. Adv. Energy Mater., 2013, 3(2): 156
DOIURL [本文引用: 1]
[4]
Zhang B W, Ma K X, Lv X, et al.
Recent advances of NASICON-Na3V2(PO4)3 as cathode for sodium-ion batteries: synthesis, modifications, and perspectives
[J]. J. Alloys Compd., 2021, 867: 159060
DOIURL [本文引用: 1]
[5]
Wang E H, Chen M Z, Liu X H, et al.
Organic cross-linker enabling a 3D porous skeleton-supported Na3V2(PO4)3/carbon composite for high power sodium-ion battery cathode
[J]. Small, 2018, 3: 1800169
[本文引用: 1]
[6]
Cao X X, Pan A Q, Yin B, et al.
Nanoflake-constructed Porous Na3V2(PO4)3/C hierarchical microspheres as a bicontinuous cathode for sodium-ion batteries applications
[J]. Nano Energy, 2019, 60: 312
DOIURL [本文引用: 1]
[7]
Zhang J X, Fang Y J, Xiao L F, et al.
Graphene-scaffolded Na3V2(PO4)3 microsphere cathode with high rate capability and cycling stability for sodium ion batteries
[J]. ACS Appl. Mater. Interfaces, 2017, 9: 7177
DOIURL [本文引用: 1]
[8]
Xu J Y, Gu E L, Zhang Z Z, et al.
Fabrication of porous Na3V2(PO4)3/reduced graphene oxide hollow spheres with enhanced sodium storage performance
[J]. J. Colloid Interface Sci., 2020, 567: 84
DOIURL [本文引用: 1]
[9]
Wang H, Jiang D L, Zhang Y, et al.
Self-combustion synthesis of Na3V2(PO4)3 nanoparticles coated with carbon shell as cathode materials for sodium-ion batteries
[J]. Electrochim. Acta, 2015, 155: 23
DOIURL [本文引用: 2]
[10]
V?li R, Aruv?li J, H?rmas M, et al.
Glycine-nitrate process for synthesis of Na3V2(PO4)3 cathode material and optimization of glucose-derived hard carbon anode material for characterization in full cells
[J]. Batteries, 2019, 5(3): 56
DOIURL
[11]
Salehi A H, Masoudpanah S M, Hasheminiasari M, et al.
A solution synthesis of Na3V2(PO4)3 cathode for sodium storage by using CTAB additive
[J]. Solid State Ion., 2020, 347: 115269
DOIURL
[12]
Li N L, Tong Y W, Yi D W, et al.
3D interconnected porous carbon coated Na3V2(PO4)3/C composite cathode materials for sodium-ion batteries
[J]. Ceram. Int., 2020, 46(17): 27493
DOIURL [本文引用: 1]
[13]
Sancheti S V, Gogate P R.
A review of engineering aspects of intensification of chemical synthesis using ultrasound
[J]. Ultrason. Sonochem., 2017, 36: 527
DOIPMID [本文引用: 1] " />
The chemical and physical effects of ultrasound with a frequency above 16kHz, higher than the audible frequency of the human ear, have proven to be a useful tool for variety of systems ranging from the application of ultrasound in environmental remediation to the cooperation of ultrasound waves with chemical processing regarding as sonochemistry. Ultrasound opened up new advances in textile wet processing including desizing, scouring, bleaching, dyeing, printing and finishing and also nanoprocessing including nanopretreatment, nanodyeing, nanoprinting and nanofinishing. Use of ultrasound appears to be a promising alternative technique to reduce energy, chemicals and time involved in various operations. Over the past years there has been an enormous effort on using sonochemistry for the synthesis of nanomaterials on various textile materials. In situ sonosynthesis of nanoparticles and nanocomposites on different textiles is a pioneering approach driving future investigations. With such wide range of applications and vast ever increasing publications, the objective of this paper is presenting a comprehensive review on ultrasound application in textile from early time to now by the main emphasis on the sonosynthesis of nanomaterials outlining directions toward future research. Copyright ? 2014 Elsevier B.V. All rights reserved.
[15]
Que A Z, Zhu T Y, Zheng Y Y.
Preparation of hollow magnetic graphene oxide and its adsorption performance for methylene blue
[J]. Chin. J. Mater. Res., 2021, 35(7): 517
DOI [本文引用: 1] " />
用共沉淀法將Fe<sub>3</sub>O<sub>4</sub>沉淀在PS微球上并用甲苯去除PS制備出Fe<sub>3</sub>O<sub>4</sub>@PS,再用超聲將用Hummers法制備的氧化石墨烯包裹在Fe<sub>3</sub>O<sub>4</sub>@PS表面制備出中空磁性氧化石墨烯,研究了這種復(fù)合材料對模擬亞甲基藍(lán)廢水的吸附
結(jié)果表明:在55℃,用中空磁性氧化石墨烯對亞甲基藍(lán)染料吸附60 min達(dá)到平衡,最大吸附量為349.85 mg·g<sup>-1</sup>
吸附劑循環(huán)8次,吸附效率仍高于80%
用準(zhǔn)二級動(dòng)力學(xué)模型可很好地?cái)M合中空磁性氧化石墨烯對亞甲基藍(lán)的吸附
結(jié)果表明,吸附速率對亞甲基藍(lán)染料的初始濃度較為敏感,主要為化學(xué)吸附
吸附過程符合Langmuir等溫吸附模型,說明這種吸附為單層表面吸附
[16]
Suslick K S.
Sonochemistry
[J]. Science, 1990, 247(4949): 1439
DOIPMID [本文引用: 1] class="outline_tb" " />
Cavitation generated using ultrasound can enhance the rates of several chemical reactions giving better selectivity based on the physical and chemical effects. The present review focuses on overview of the different reactions that can be intensified using ultrasound followed by the discussion on the chemical kinetics for ultrasound assisted reactions, engineering aspects related to reactor designs and effect of operating parameters on the degree of intensification obtained for chemical synthesis. The cavitational effects in terms of magnitudes of collapse temperatures and collapse pressure, number of free radicals generated and extent of turbulence are strongly dependent on the operating parameters such as ultrasonic power, frequency, duty cycle, temperature as well as physicochemical parameters of liquid medium which controls the inception of cavitation. Guidelines have been presented for the optimum selection based on the critical analysis of the existing literature so that maximum process intensification benefits can be obtained. Different reactor designs have also been analyzed with guidelines for efficient scale up of the sonochemical reactor, which would be dependent on the type of reaction, controlling mechanism of reaction, catalyst and activation energy requirements. Overall, it has been established that sonochemistry offers considerable potential for green and sustainable processing and efficient scale up procedures are required so as to harness the effects at actual commercial level.Copyright ? 2016 Elsevier B.V. All rights reserved.
[14]
Harifi T, Montazer M.
A review on textile sonoprocessing: a special focus on sonosynthesis of nanomaterials on textile substrates
[J]. Ultrason. Sonochem., 2015, 23: 1
PMID " />
The Fe3O4 coated polystyrene microsphere (PS), namely Fe3O4@PSwas firstly fabricated by co-precipitation method with FeCl2·6H2O and FeCl3 as raw material, and PS microsphere as tempelate. Then Fe3O4@PS was immersed in toluene solution for removing the PS template. Next, the hollow Fe3O4 microsphere was coated with graphene oxide sheets under sonication to produce the hollow magnetic graphene oxide (HMGO). Subsequently, the absorption performance of the HMGO for methylene blue (MB) was assessed in an artificial waste MB solution. Results verified that the adsorption process reach to equilibrium at 55℃ after 60 min. The maximum adsorption capacity of MB on HMGO is 349.85 mg·g-1. The adsorbent shows good stability and reusability, after 8 times recycling the adsorption rate is still higher than 80%. The adsorption process of MB on HMGO can be well fitted by Pseudo-second-order kinetic model and the adsorption rate is sensitive to the initial concentration. The adsorption isotherm conforms to the Langmuir isotherm model, and the adsorption process is a single-layer surface adsorption.
闕愛珍, 朱桃玉, 鄭玉嬰.
中空磁性氧化石墨烯的制備及其對亞甲基藍(lán)吸附性能
[J]. 材料研究學(xué)報(bào), 2021, 35(7): 517
用共沉淀法將Fe<sub>3</sub>O<sub>4</sub>沉淀在PS微球上并用甲苯去除PS制備出Fe<sub>3</sub>O<sub>4</sub>@PS,再用超聲將用Hummers法制備的氧化石墨烯包裹在Fe<sub>3</sub>O<sub>4</sub>@PS表面制備出中空磁性氧化石墨烯,研究了這種復(fù)合材料對模擬亞甲基藍(lán)廢水的吸附
結(jié)果表明:在55℃,用中空磁性氧化石墨烯對亞甲基藍(lán)染料吸附60 min達(dá)到平衡,最大吸附量為349.85 mg·g<sup>-1</sup>
吸附劑循環(huán)8次,吸附效率仍高于80%
用準(zhǔn)二級動(dòng)力學(xué)模型可很好地?cái)M合中空磁性氧化石墨烯對亞甲基藍(lán)的吸附
結(jié)果表明,吸附速率對亞甲基藍(lán)染料的初始濃度較為敏感,主要為化學(xué)吸附
吸附過程符合Langmuir等溫吸附模型,說明這種吸附為單層表面吸附
[16]
Suslick K S.
Sonochemistry
[J]. Science, 1990, 247(4949): 1439
PMID
Ultrasound causes high-energy chemistry. It does so through the process of acoustic cavitation: the formation, growth and implosive collapse of bubbles in a liquid. During cavitational collapse, intense heating of the bubbles occurs. These localized hot spots have temperatures of roughly 5000 degrees C, pressures of about 500 atmospheres, and lifetimes of a few microseconds. Shock waves from cavitation in liquid-solid slurries produce high-velocity interparticle collisions, the impact of which is sufficient to melt most metals. Applications to chemical reactions exist in both homogeneous liquids and in liquid-solid systems. Of special synthetic use is the ability of ultrasound to create clean, highly reactive surfaces on metals. Ultrasound has also found important uses for initiation or enhancement of catalytic reactions, in both homogeneous and heterogeneous cases.
[17]
Chen Q Y, Liu Q, Chu X C, et al.
Ultrasonic-assisted solution combustion synthesis of Porous Na3V2(PO4)3/C: formation mechanism and sodium storage performance
[J]. J. Nanopart. Res., 2017, 19: 146
[本文引用: 2]
[18]
Li S, Dong Y F, Xu L, et al.
Effect of carbon matrix dimensions on the electrochemical properties of Na3V2(PO4)3 nanograins for high-performance symmetric sodium-ion batteries
[J]. Adv. Mater., 2014, 26(21): 3545
[19]
Fang Y J, Xiao L F, Ai X P, et al.
Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries
[J]. Adv. Mater., 2015, 27(39): 5895
[20]
Zhu C B, Kopold P, Van Aken P A, et al.
High power-high energy sodium battery based on threefold interpenetrating network
[J]. Adv. Mater., 2016, 28(12): 2409
[21]
Xu Y N, Wei Q L, Xu C, et al.
Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode
[J]. Adv. Energy Mater., 2016, 6(14): 1600389
[22]
Rui X H, Sun W P, Wu C, et al.
An advanced sodium-ion battery composed of carbon coated Na3V2(PO4)3 in a porous graphene network
[J]. Adv. Mater., 2015, 27(42): 6670
[23]
Hummers W S, Offeman R E.
Preparation of graphitic oxide
[J]. J. Am. Chem. Soc., 1958, 80(6): 1339
[24]
Purushothaman K K, Saravanakumar B, Babu I M, et al.
Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors
[J]. RSC Adv., 2014, 4(45): 23485
[25]
Zhang J T, Xiong Z G, Zhao X S.
Graphene-metal-oxide composites for the degradation of dyes under visible light irradiation
[J]. J. Mater. Chem., 2011, 21(11): 3634
The first report on excellent cycling stability and superior rate capability of Na3V2(PO4)3 for sodium ion batteries
1
2013
聲明:
“鈉離子電池雙層碳包覆Na3V2(PO4)3 正極材料的超聲輔助溶液燃燒合成及其電化學(xué)性能” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)