鋁酸鎂(MgAl2O4)是一種重要的尖晶石型氧化物,其結構通式為AB2O4
鋁酸鎂的晶體結構和能帶結構特殊,具有較高的化學穩(wěn)定和熱穩(wěn)定性、高催化活性、低密度和無毒等特點,在許多領域有潛在的應用價值[1~6]
MgAl2O4具有較強的抗輻照性能,是未來空間站照明系統(tǒng)的候選發(fā)光基質材料[7]
但是,MgAl2O4的帶隙較大,是一種非自激活材料
MgAl2O4只能在強紫外或激光光源下激發(fā)出現(xiàn)熒光發(fā)射峰,極大地限制了其在發(fā)光領域的應用[8]
因此,改善MgAl2O4的發(fā)光性能并拓展它的應用范圍有重要的意義
目前,提高MgAl2O4發(fā)光性能的方法主要有三種
一是引入金屬氧化物構成特殊的能級結構以提高電子空穴對的復合幾率,從而改善MgAl2O4的發(fā)光性能[5,9];二是引入合適的激活離子如
稀土元素、Fe、Co、Ni、Mn、C、N等,或基于能量傳遞原理同時引入多種離子增強的MgAl2O4的發(fā)光性能[5,10,11];三是用離子輻照引入缺陷,改善MgAl2O4的發(fā)光性能[12,13]
近年來,發(fā)展了一種用金屬顆粒與半導體氧化物復合增強主晶格材料發(fā)光或其它物理化學性能的新方法[14~17]
本文用微波輔助聚丙烯酰胺凝膠法合成 MgAl2O4:Mg熒光粉,研究燒結溫度對MgAl2O4:Mg熒光粉相結構、官能團、顏色、光吸收能力、能帶值及發(fā)光性能的影響,并基于能帶理論研究在MgAl2O4中引入鎂顆粒后主晶格材料熒光的淬滅和出現(xiàn)新熒光發(fā)射峰的機理
1 實驗方法1.1 材料的合成
將適量的鎂粉加入20 mL的去離子水中,在室溫超聲30 min后得到A溶液
將適量的三氯化鋁和硝酸鎂依次添加到裝有20 mL去離子水的燒杯中,超聲30 min后得到B溶液
將B溶液倒入裝有A溶液的燒杯中,在持續(xù)超聲條件下逐次加入4.7282 g檸檬酸、20 g葡萄糖、9.5958 g丙烯酰胺和1.9192 g亞甲基雙丙烯酰胺
上述溶液混合均勻后燒杯轉移到帶升溫裝置的攪拌器上進行升溫,在80℃持續(xù)攪拌以使丙烯酰胺和亞甲基雙丙烯酰胺聚合,得到果凍狀凝膠
將果凍狀凝膠轉移至120℃干燥箱中干燥24 h,得到黑色干凝膠
將干凝膠研磨成粉
將部分粉末分別在600、700、800、900和1000℃燒結5 h,得到目標產物-MgAl2O4:Mg熒光粉
MgAl2O4與Mg粉的質量比為9:1
MgAl2O4:Mg熒光粉的制備流程,如圖1所示
圖1MgAl2O4:Mg熒光粉的制備流程
Fig.1Chemical route for the preparation of MgAl2O4:Mg phosphors.
1.2 材料的表征
使用DX-2700型X射線粉末衍射儀分析MgAl2O4:Mg熒光粉的相結構和純度,測試波長為0.15406 nm,操作電流為30 mA,操作電壓為40 kV
使用IFS 66 v/S型傅里葉紅外光譜以測量MgAl2O4:Mg熒光粉的紅外光譜,測試波數(shù)范圍為400~4000 cm-1
用ULTRA 55型場發(fā)射掃描電鏡表征MgAl2O4:Mg熒光粉的表面形貌
使用紫外可見分光光度計在積分球附件上測量MgAl2O4:Mg熒光粉的紫外可見漫反射光譜
使用He-Cd激光器在共聚焦拉曼光譜系統(tǒng)上室溫采集MgAl2O4:Mg熒光粉的的熒光光譜,激發(fā)波長為325 nm
采用He-Cd激光器(325 nm)作為激發(fā)光源,在室溫測量了MgAl2O4:Mg干凝膠粉末在不同溫度燒結產物的熒光光譜
2 結果和討論2.1 XRD分析
金屬顆粒和燒結溫度對MgAl2O4的相純度有較大影響
將MgAl2O4:Mg干凝膠粉末在不同溫度燒結,其產物的XRD圖譜如圖2所示
由圖2可知,在600℃煅燒MgAl2O4:Mg干凝膠粉末,得到的樣品為非晶態(tài),與在600℃煅燒MgAl2O4干凝膠粉體得到的產物結果一致[7]
將MgAl2O4:Mg干凝膠粉末在700℃燒結,開始出現(xiàn)立方相的MgAl2O4的衍射峰,標準JCPDS卡片號為21-1152
衍射角在31.265、36.851、44.829、55.655、59.370、65.239和78.401o對應的晶面指數(shù)分別為(220)、(311)、(400)、(422)、(511)、(440)和(622)
隨著燒結溫度的提高,衍射峰的強度逐漸增強
燒結溫度達到900℃時出現(xiàn)MgO的衍射峰,標準JCPDS卡片號為30-0794
燒結溫度為1000℃時MgAl2O4和MgO(□)的衍射峰被進一步增強
由此可見,當燒結溫度達到900℃或以上時,
鎂金屬顆粒容易氧化為MgO
在低溫燒結過程中未觀察到Mg金屬顆粒的衍射峰,其主要原因:一是Mg金屬顆粒的含量不高,Mg金屬顆粒很容易被包覆在厚厚的MgAl2O4前驅體殼層內,測量時X射線穿透深度不一定能達到可測范圍;但是,隨著燒結溫度的提高MgAl2O4的結晶度提高,其它有機物雜質減少,甚至Mg金屬顆粒出現(xiàn)氧化;二是Mg金屬顆粒的主峰集中在2θ=32.193°和36.619°,這些衍射峰幾乎與MgAl2O4的衍射峰重合,導致未觀察到Mg金屬顆粒的衍射峰
從圖2還可以看出,金屬顆粒和燒結溫度沒有改變MgAl2O4主晶格相的晶體結構
圖2MgAl2O4:Mg干凝膠粉末在不同溫度燒結后的產物和MgAl2O4的XRD圖譜
Fig.2XRD patterns of MgAl2O4:Mg xerogel powders calcined at different temperatures
2.2 紅外光譜分析
紅外光譜是分析樣品中官能團的有效手段
圖3給出了MgAl2O4:Mg干凝膠粉末在不同溫度燒結產物的FTIR圖譜
由圖3可見,所有樣品均出現(xiàn)了1640和3441 cm-1的吸收峰,且隨著燒結溫度的提高吸收峰的強度逐漸減弱
根據文獻[18~20],1640和3441 cm-1的吸收峰可分別歸因于吸附水的彎曲和伸縮振動模式
MgAl2O4:Mg干凝膠粉末在600~800℃的燒結產物,有兩個有機物的吸收峰
位于2925和2834 cm-1的兩個吸收峰,可分別歸因于-CH在-CH和-CH2的伸縮振動和碳酸根離子[21,22]
此外,一個位于1431 cm-1的碳酸根離子吸收峰直到燒結溫度達到900℃才消失[22]
在短波數(shù)段,859、693和503 cm-1的吸收峰可分別歸因于AlO4四面體配位的伸縮振動[23]、MgAl2O4中Mg-O的伸縮振動[10,24]和AlO6八面體配位的伸縮振動[25,26]
MgAl2O4:Mg干凝膠粉末在900或1000℃的燒結產物,出現(xiàn)一個位于428 cm-1的新吸收峰,可歸因于MgO中Mg-O的伸縮振動[27~30]
由此可見,紅外光譜也證實了鎂顆粒在900℃以上燒結氧化成了MgO
與文獻[8]對比,在鋁酸鎂前驅體中引入鎂顆粒抑制了鋁酸鎂相的形成
圖3MgAl2O4:Mg干凝膠粉末在不同溫度燒結后產物的FTIR圖譜
Fig.3FTIR spectra of MgAl2O4:Mg xerogel powders calcined at different temperatures
2.3 表面形貌分析
圖4給出了MgAl2O4:Mg干凝膠粉末在800℃燒結獲得產物的SEM照片
從圖4可以看出,得到的產物呈方便面形狀
對其正面和側面觀察發(fā)現(xiàn),在方便面形狀之上還有一些細的顆粒
這表明,在MgAl2O4前驅體中引入鎂顆粒使MgAl2O4:Mg熒光粉的形貌發(fā)生了很大變化[8]
其原因是,鎂顆粒在常溫水溶液中不發(fā)生反應;當將檸檬酸絡合物、丙烯酰胺和亞甲基雙丙烯酰胺引入前驅體溶液中時,需要升溫使丙烯酰胺和亞甲基雙丙烯酰胺聚合,達到二者聚合的臨界溫度時形成三維網狀的聚丙烯酰胺,聚丙烯酰胺將包絡檸檬酸絡合物和鎂顆粒;在高溫下鎂顆粒迅速發(fā)生放熱反應釋放出氣體,使檸檬酸絡合物結構發(fā)生彎曲粘連;在高溫燒結時除去有機物雜質,很容易得到粘連團聚的方便面形狀的MgAl2O4:Mg熒光粉
因為得到凝膠非??欤V顆粒雖然發(fā)生了放熱反應卻很難發(fā)生實質性的反應,由此用XRD、FTIR光譜分析800℃燒結產物難以發(fā)現(xiàn)其它類型的鎂氧化物或氫氧化物
根據楊華等[31,32]的報道,用兩步聚丙烯酰胺凝膠法很容易得到0~3型核殼結構金屬氧化物復合物
由于實驗條件的限制,本文的實驗只能推測出鎂顆粒在較低溫度燒結很難氧化
圖4MgAl2O4:Mg干凝膠粉末在800℃燒結后產物的SEM照片
Fig.4SEM images of MgAl2O4:Mg xerogel powders calcined at 800°C (a) overall view; (b) front view; (c) lateral view
2.4 光學性質
紫外可見漫反射光譜可用于分析合成樣品的顏色性質、光吸收能力和能帶(Eg)值
圖5a給出了MgAl2O4:Mg干凝膠粉末在不同溫度燒結產物的紫外可見漫反射光譜
可以看出,所有樣品的反射率隨著波長的增大先下降后提高
在600℃煅燒的MgAl2O4:Mg干凝膠粉末的反射率在<250 nm和320~750 nm波長范圍內最低
在700℃煅燒的MgAl2O4:Mg干凝膠粉末的反射率在250~320 nm和>750 nm波長范圍內出現(xiàn)了反常
變化趨勢表明,在600℃煅燒的MgAl2O4:Mg干凝膠粉末的反射率曲線與其它幾個樣品不同,得到的樣品還處于非晶態(tài)
在700℃煅燒的MgAl2O4:Mg干凝膠粉末的反射率在<230 nm的范圍比其它樣品高,表明相純度和結晶度對樣品的反射率有極大的影響
當MgAl2O4:Mg干凝膠粉末在800℃燒結時,產物的反射率曲線基本趨于穩(wěn)定
繼續(xù)提高燒結溫度則出現(xiàn)MgO,導致200~450 nm范圍內反射率的變化較大
由紫外可見漫反射光譜可知,MgAl2O4:Mg干凝膠粉末在不同溫度燒結產物的顏色可能不同
圖5MgAl2O4:Mg干凝膠粉末在不同溫度燒結后產物的紫外可見漫反射光譜和紫外可見吸收光譜
Fig.5UV-Vis diffuse reflectance spectra (a), UV-Vis absorption spectra (b) of MgAl2O4:Mg xerogel powders calcined at different temperatures
根據文獻[33,34]可計算MgAl2O4:Mg熒光粉的顏色坐標(L*, a*, b*)、色度參數(shù)(c*)、色彩角(H°)和色差(ECIE*),這里L*代表黑色(0)→白色(100),a*代表綠色(-)→紅色(+)和b*代表藍色(-)→黃色(+)
通過計算,表1給出了MgAl2O4:Mg熒光粉的顏色坐標(L*, a*, b*)、色度參數(shù)(c*)、色彩角(H°)和色差(ECIE*)
對于白顏色的樣品,主要觀察L*值的變化
從表1可以看出,L*值隨著燒結溫度的提高先增加后減小
當樣品的結晶度較低甚至處于非晶態(tài)時,L*值約為55.878,顏色為灰棕色,與圖6(1)中樣品的實物照片一致
L*值隨著燒結溫度的提高而增加,主要是MgAl2O4的結晶度增加,顏色達到穩(wěn)定
進一步提高燒結溫度時,MgO成相,導致其L*值有所下降
從表1也可以看出,ECIE*的變化趨勢與L*值一致
b*和c*的值隨著燒結溫度的提高而減小,而a*和H°呈無規(guī)則變化
雖然如此,卻不影響樣品顏色的判斷,實物照片如圖6所示
在800℃煅燒的MgAl2O4:Mg干凝膠粉末的L*值最大,說明該樣品具有最亮的白色(圖6(3))
在1000℃燒結的MgAl2O4:Mg干凝膠粉末,樣品由亮白色稍微變暗
從漫反射譜中可以看出,燒結溫度為700℃~800℃的樣品其反射率發(fā)生了很大的變化,色度參數(shù)的變化已非常大,樣品的顏色也由白中帶灰變?yōu)榘咨?其主要原因是,在燒結過程中MgAl2O4:Mg前驅體有機物雜質迅速減少,MgAl2O4主晶格衍射峰強度,如圖2所示
這一現(xiàn)象,MgFe2O4干凝膠在500和600℃燒結時也能被觀察到[34]
Table 1
表1
表1MgAl2O4:Mg干凝膠粉末在不同溫度燒結后產物的色度參數(shù)和Eg值
Table 1Color coordinates and Eg values of MgAl2O4:Mg xerogel powders calcined at different temperatures
Sample
|
Color coordinates
|
Eg /eV
|
L*
|
a*
|
b*
|
c*
|
Ho
|
ECIE*
|
600
|
55.878
|
5.226
|
13.080
|
14.085
|
68.221
|
57.626
|
2.090
|
700
|
70.892
|
0.345
|
10.249
|
10.296
|
88.072
|
71.636
|
3.643
|
800
|
98.318
|
-0.497
|
4.307
|
4.336
|
-83.418
|
98.414
|
3.803
|
900
|
98.049
|
-0.531
|
3.055
|
3.101
|
-80.140
|
98.098
|
4.027
|
1000
|
97.652
|
-0.161
|
2.391
|
2.396
|
-86.148
|
97.681
|
3.970
|
圖6MgAl2O4:Mg干凝膠粉末在不同溫度燒結后產物的實物照片
Fig.6Real photos of MgAl2O4:Mg xerogel powders calcined at different temperatures (1) 600℃; (2) 700℃; (3) 800℃; (4) 900℃; (5) 1000℃
根據Kubelka-Munk(K-M)理論可將MgAl2O4:Mg熒光粉的紫外可見漫反射光譜轉換為紫外-可見吸收光譜[27]
圖5b給出了MgAl2O4:Mg干凝膠粉末在不同溫度燒結產物的紫外可見吸收光譜圖
對于在600?C燒結的MgAl2O4:Mg干凝膠粉末得到的非晶態(tài)樣品,在200~850 nm波長范圍具有很寬的吸收帶
與MgAl2O4相比,得到了類似的結果,可見非晶態(tài)的樣品的光吸收能力類似
當燒結溫度提高到700?C時,光吸收范圍縮減為200~500 nm
在274 nm觀察到一個強的吸收峰,是陰離子空位F+心引起的[35]
隨著燒結溫度進一步提高,在215和452 nm觀察到兩個新的吸收峰,可分別被歸因于MgO中的F心[35]和O2--Al3+間的電荷轉移[36]
紫外可見吸收光譜分析結果進一步表明,在900℃燒結出現(xiàn)了MgO相,且燒結溫度和Mg顆粒對整個體系的顏色和光吸收性質有重要的影響
基于公式(6)[33,37],可計算出MgAl2O4:Mg熒光粉的帶隙能(Eg)值
(F(R)hν)n=A(hν-Eg)
式中h、v、Eg和A分別為普朗克常數(shù)、頻率、帶隙能值和吸收系數(shù)
圖7是MgAl2O4:Mg干凝膠粉末在不同燒結溫度獲得產物的Eg值
所合成樣品的Eg值由(F(R)hv)2 vs (hv)最陡處的斜率的截距而得,結果如圖7f所示和表1所示
MgAl2O4:Mg的Eg值隨燒結溫度的升高先增大后減小
樣品Eg值的增加可能是由于MgAl2O4:Mg樣品中有機官能團隨著燒結溫度的升高而減少和結晶度的提高所致
但燒結溫度升高到1000℃后,MgAl2O4:Mg樣品的Eg值減小,主要是由于結晶度和MgO的協(xié)同作用所致
圖7MgAl2O4:Mg干凝膠粉末在不同溫度燒結后產物的Eg值及其與燒結溫度的關系
Fig.7Egvalues of MgAl2O4:Mg xerogel powders calcined at different temperatures (a) 600℃; (b) 700℃; (c) 800℃; (d) 900℃; (e) 1000℃; (f) relationship between Eg value and sintering temperature
2.5 發(fā)光性質
圖8給出了MgAl2O4:Mg干凝膠粉末在800℃燒結產物的熒光光譜圖
從圖8可見,熒光光譜集中在635~690 nm波長范圍內
使用Origin 8.0軟件可將其擬合為三個高斯峰,分別位于650、656和680 nm
對于純MgAl2O4,在395和425 nm處可觀察到兩個熒光峰[8]
而引入鎂顆粒后,395和425 nm兩個熒光峰淬滅
Kato等[38]發(fā)現(xiàn),MgO陶瓷在600 nm附近有一強發(fā)射峰,但是沒有分析其機理
Panin等[39]用簡單的濕化學法合成了顆粒尺寸約為500 nm的MgO,在696 nm附近出現(xiàn)一個點缺陷引起的強熒光發(fā)射峰
Cui等[40]用共沉淀法合成了純MgO,在325 nm波長的光激發(fā)下在650和666 nm出現(xiàn)了強熒光發(fā)射峰
這些發(fā)射峰是氧空位、鎂空位、間隙氧和缺陷引起的
對于在900和1000℃燒結得到的MgAl2O4:Mg樣品,其發(fā)射峰主要由氧空位和鎂空位引起
圖8MgAl2O4:Mg干凝膠粉末在800℃燒結后產物的熒光光譜
Fig.8Fluorescence spectra of MgAl2O4:Mg xerogel powders calcined at 800℃
圖9給出了MgAl2O4:Mg干凝膠粉末在800℃燒結產物的色度圖
色度圖基于MgAl2O4:Mg干凝膠粉末在800℃燒結產物的熒光光譜和使用CIE 1931色度軟件計算的結果
從圖9可見,CIE色度坐標值為(x, y)=(0.7254, 0.2746),表現(xiàn)為紅色發(fā)光
燈用的三基色紅色熒光粉使用的是氧化釔銪,只能發(fā)射611 nm的紅光
MgAl2O4:Mg具有較長的紅色發(fā)光范圍,在LED中摻雜適量的紅色熒光粉有利于改善顯色性及色溫
因此,MgAl2O4:Mg是一種潛在的燈用紅色熒光粉[41,42]
圖9MgAl2O4:Mg干凝膠粉末在800℃燒結后產物的色度
Fig.9CIE diagram of MgAl2O4:Mg xerogel powders calcined at 800℃
隨著燒結溫度的提高峰的強度發(fā)生了變化,而峰的位置幾乎不變
圖10給出了650 nm的熒光發(fā)射峰熒光強度與燒結溫度的關系
由圖10可知,隨著燒結溫度的提高熒光強度逐漸減弱
對于在600~800℃燒結的MgAl2O4:Mg樣品,熒光強度的降低可能是有機物官能團的減少引起的
當數(shù)據溫度提高到900和1000℃,熒光強度進一步減弱,是整個體系結晶度的提高減少了氧空位、鎂空位以及缺陷等的含量所致
同時,熒光強度的降低與MgAl2O4:Mg熒光粉的Eg值增加也有一定關系
這表明,MgAl2O4:Mg熒光粉的發(fā)光性能主要受雜質、Eg值、空位和缺陷等的協(xié)同作用的影響
圖10熒光強度與燒結溫度的關系
Fig.10Relationship between luminescence intensity at 650 nm and sintering temperature
2.6 發(fā)光機理
基于能帶排列理論構建的多元復合物半導體增強發(fā)光的能帶排列方式,有I型能帶排列、II型能帶排列和III型能帶排列[43~46]
MgAl2O4:Mg屬于特殊的II型能帶排列
為了詳細的分析MgAl2O4:Mg熒光粉的發(fā)光機理,圖11給出了MgAl2O4和Mg顆粒的能級圖
根據能帶理論,激光照射到MgAl2O4:Mg熒光粉,使電子從MgAl2O4的價帶躍遷到導帶,從而在價帶留下空穴
躍遷到導帶的電子,一部分經由費米能級進入鎂顆粒的價帶
由于金屬顆粒的導帶和價帶重合電子很容易躍遷到其導帶,通過表面等離子體共振(SPR)散射回MgAl2O4的導帶[47,48]
根據文獻[47],這一現(xiàn)象導致主晶格相的帶邊發(fā)射淬滅
MgAl2O4的熒光發(fā)射峰集中在395和425 nm,而本文的實驗中并未觀察到相關的熒光發(fā)射峰,就是這一原因所致
此外,躍遷到MgAl2O4導帶的電子在缺陷能級等的作用下弛豫到更低的能級,進而與價帶空穴復合,多余的能量以光子的形式釋放
較高能級上的電子繼續(xù)向更低能級弛豫,最終與MgAl2O4導帶的空穴復合并發(fā)射光子
由此可見,將鎂顆粒引入到MgAl2O4系統(tǒng)中使MgAl2O4的本征發(fā)射淬滅,在缺陷等的作用下產生了新的熒光發(fā)射峰
圖11MgAl2O4:Mg熒光粉的發(fā)光機理
Fig.11Photoluminescence mechanism of MgAl2O4:Mg phosphors
3 結論
用超聲輔助聚丙烯酰胺凝膠法可合成新穎的方便面型MgAl2O4:Mg熒光粉
在MgAl2O4體系中引入Mg金屬顆粒抑制了MgAl2O4相的形成,且只有在900℃及以上的溫度燒結鎂顆粒才能氧化成MgO
隨著燒結溫度的提高能帶值先增大后稍減小,顏色由暗棕色變?yōu)榘咨?鎂顆粒的引入使MgAl2O4本征發(fā)射峰淬滅,主要是金屬顆粒的表面等離子體共振所致;在650、656和680 nm出現(xiàn)三個新的熒光發(fā)射峰,是缺陷能級引起的
參考文獻
View Option 原文順序文獻年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Han M, Wang Z S, Xu Y, et al.
Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method
[J]. Mater. Chem. Phys., 2018, 215: 251
DOIURL [本文引用: 1]
[2]
Laobuthee A, Wongkasemjit S, Traversa E, et al.
MgAl2O4 spinel powders from oxide one pot synthesis (OOPS) process for ceramic humidity sensors
[J]. J. Eur. Ceram. Soc., 2000, 20: 91
DOIURL
[3]
Tsai D S, Wang C T, Yang S J, et al.
Hot isostatic pressing of MgAl2O4 spinel infrared windows
[J]. Mater. Manuf. Process., 1994, 9: 709
DOIURL
[4]
Fu P, Lu W Z, Lei W, et al.
Transparent polycrystalline MgAl2O4 ceramic fabricated by spark plasma sintering: Microwave dielectric and optical properties
[J]. Ceram. Int., 2013, 39: 2481
DOIURL
[5]
Wang S F, Chen C L, Li Y W, et al.
Synergistic effects of optical and photoluminescence properties, charge transfer, and photocatalytic activity in MgAl2O4: Ce and Mn-Codoped MgAl2O4: Ce phosphors
[J]. J. Electron. Mater., 2019, 48: 6675
DOIURL [本文引用: 2]
[6]
Qi J Q, Lv T C, Chang X H, et al.
Investigation on preparation and transparent mechanism of MgAl2O4 transparent nano-ceramics
[J].Chin. J. Mater. Res., 2006, 20: 367
[本文引用: 1]
齊建起, 盧鐵城, 常相輝等.
MgAl2O4納米透明陶瓷的制備及其透明機理
[J]. 材料研究學報, 2006, 20: 367
[本文引用: 1]
[7]
He J, Lin L B, Lu Y, et al.
Study on optical spectra of transparent MgAl2O4 ceramics treated with γ-irradiation and annealing
[J].J. Synthet. Cryst., 2004, 31: 63
[本文引用: 2]
何捷, 林理彬, 盧勇等.
γ輻射及退火MgAl2O4透明陶瓷光譜特性研究
[J]. 人工晶體學報, 2004, 31: 63
[本文引用: 2]
[8]
Wang S F, Gao H J, Wei Y, et al.
Insight into the optical, color, photoluminescence properties, and photocatalytic activity of the N-O and C-O functional groups decorating spinel type magnesium aluminate
[J]. CrystEngComm, 2019, 21: 263
DOIURL [本文引用: 4]
[9]
Moshtaghioun B M, Pe?a J I, Merino R I.
Medium infrared transparency of MgO-MgAl2O4 directionally solidified eutectics
[J]. J. Eur. Ceram. Soc., 2020, 40: 1703
DOIURL [本文引用: 1]
[10]
Choudhary A K, Dwivedi A, Bahadur A, et al.
Enhanced upconversion emission and temperature sensor sensitivity in presence of Bi3+ ions in Er3+/Yb3+ co-doped MgAl2O4 phosphor
[J]. Ceram. Int., 2018, 44: 9633
DOIURL [本文引用: 2]
[11]
Kumari P, Dwivedi Y.
Optical analysis of interaction between Sm and Eu ions in MgAl2O4 spinel nanophosphor
[J]. Optik, 2020, 203: 163977
DOIURL [本文引用: 1]
[12]
Ibarra A, Bravo D, Garcia M A, et al.
Dose dependence of neutron irradiation effects on MgAl2O4 spinels
[J]. J. Nucl. Mater., 1998, 258-263: 1902
DOIURL [本文引用: 1]
[13]
Ibarra A, Vila R, Garner F A.
Optical and dielectric properties of neutron irradiated MgAl2O4 spinels
[J]. J. Nucl. Mater., 1996, 233-237: 1336
DOIURL [本文引用: 1]
[14]
Yang Z X, Zhong W, Au C T, et al.
Novel photoluminescence properties of magnetic Fe/ZnO composites: self-assembled ZnO nanospikes on Fe nanoparticles fabricated by hydrothermal method
[J]. J. Phys. Chem., 2009, 113C: 21269
[本文引用: 1]
[15]
Im J, Singh J, Soares J W, et al.
Synthesis and optical properties of dithiol-linked ZnO/gold nanoparticle composites
[J]. J. Phys. Chem., 2011, 115C: 10518
[16]
Huan H, Jile H, Tang Y J, et al.
Fabrication of ZnO@Ag@Ag3PO4 ternary heterojunction: superhydrophilic properties, antireflection and photocatalytic properties
[J]. Micromachines, 2020, 11: 309
DOIURL
[17]
Wang Y P, Yang H, Sun X F, et al.
Preparation and photocatalytic application of ternary n-BaTiO3/Ag/p-AgBr heterostructured photocatalysts for dye degradation
[J]. Mater. Res. Bull., 2020, 124: 110754
DOIURL [本文引用: 1]
[18]
Rahmat N, Yaakob Z, Pudukudy M, et al.
Single step solid-state fusion for MgAl2O4 spinel synthesis and its influence on the structural and textural properties
[J]. Powder Technol., 2018, 329: 409
DOIURL [本文引用: 1]
[19]
Ay A N, Zümreoglu-Karan B, Temel A, et al.
Bioinorganic magnetic core-shell nanocomposites carrying antiarthritic agents: intercalation of ibuprofen and glucuronic acid into Mg-Al-layered double hydroxides supported on magnesium ferrite
[J]. Inorg. Chem., 2009, 48: 8871
DOIURLPMID
This paper describes the synthesis and characterization of a composite constituted by an antiarthritic agent (AA) intercalated into a layered double hydroxide (LDH) supported on magnesium ferrite. Core-shell nanocomposites were prepared by depositing Mg-Al-NO(3)-LDH on a MgFe(2)O(4) core prepared by calcination of a nonstoichiometric Mg-Fe-CO(3)-LDH. Intercalation of ibuprofen and glucuronate anions was performed by ion-exchange with nitrate ions. The structural characteristics of the obtained products were investigated by powder X-ray diffraction, element chemical analysis, Fourier transform infrared spectroscopy, and thermogravimetric analysis. Morphologies of the nanocomposite particles were examined by scanning electron microscopy and transmission electron microscopy. The products were shown to intercalate substantial amounts of AA with enhanced thermal stabilities. Room-temperature magnetic measurements by vibrating sample magnetometry revealed that the products show soft ferromagnetic properties suitable for potential utilization in magnetic arthritis therapy.
[20]
Wang S Y, Yang H, Yi Z, et al.
Enhanced photocatalytic performance by hybridization of Bi2WO6 nanoparticles with honeycomb-like porous carbon skeleton
[J]. J. Environ. Manag., 2019, 248: 109341
DOIURL [本文引用: 1]
[21]
Garza-Navarro M A, Torres-Castro A, García-Gutiérrez D I, et al.
Synthesis of spinel-metal-oxide/biopolymer hybrid nanostructured materials
[J]. J. Phys. Chem., 2010, 114C: 17574
[本文引用: 1]
[22]
Huang J G, Zhuang H R, Li W L.
Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion
[J]. Mater. Res. Bull., 2003, 38: 149
DOIURL [本文引用: 2]
[23]
Pathak N, Sanyal B, Gupta S K, et al.
MgAl2O4 both as short and long persistent phosphor material: Role of antisite defect centers in determining the decay kinetics
[J]. Solid State Sci., 2019, 88: 13
DOIURL [本文引用: 1]
[24]
Puriwat J, Chaitree W, Suriye K, et al.
Elucidation of the basicity dependence of 1-butene isomerization on MgO/Mg(OH)2 catalysts
[J]. Catal. Commun., 2010, 12: 80
DOIURL [本文引用: 1]
[25]
Kutty P M, Dasgupta S.
Low temperature synthesis of nanocrystalline magnesium aluminate spinel by a soft chemical method
[J]. Ceram. Int., 2013, 39: 7891
DOIURL [本文引用: 1]
[26]
Nantharak W, Wattanathana W, Klysubun W, et al.
Effect of local structure of Sm3+ in MgAl2O4: Sm3+ phosphors prepared by thermal decomposition of triethanolamine complexes on their luminescence property
[J]. J. Alloys Compd., 2017, 701: 1019
DOIURL [本文引用: 1]
[27]
Peng S M, He J L, Hu J, et al.
Influence of functionalized MgO nanoparticles on electrical properties of polyethylene nanocomposites
[J]. IEEE Trans. Dielect. Electr. Insulat., 2015, 22: 1512
DOIURL [本文引用: 2]
[28]
Li L X, Xu D, Li X Q, et al.
Excellent fluoride removal properties of porous hollow MgO microspheres
[J]. New J. Chem., 2014, 38: 5445
DOIURL
[29]
Li Z H, Yu Q J, Chen X W, et al.
The role of MgO in the thermal behavior of MgO-silica fume pastes
[J]. J. Therm. Anal. Calorim., 2017, 127: 1897
DOIURL
[30]
Llamas R, Jiménez-Sanchidrián C, Ruiz J R.
Environmentally friendly Baeyer-Villiger oxidation with H2O2/nitrile over Mg(OH)2 and MgO
[J]. Appl. Catal., 2007, 72B: 18
[本文引用: 1]
[31]
Yang H, Cao Z E, Shen X, et al.
Fabrication of 0-3 type manganite/insulator composites and manipulation of their magnetotransport properties
[J]. J. Appl. Phys., 2009, 106: 104317
DOIURL [本文引用: 1]
[32]
Yang H, Cao Z E, Shen X, et al.
A polymer-network gel route to oxide composite nanoparticles with core/shell structure
[J]. Mater. Lett., 2009, 63: 655
DOIURL [本文引用: 1]
[33]
Yang X H.
Irradiation synthesized and photoluminescence mechanism of MgAl2O4: Ce phosphor
[J].Inorgan. Chem. Ind., 2019, 51(9): 30
[本文引用: 2]
楊曉紅.
MgAl2O4: Ce熒光粉輻照合成及發(fā)光機理研究
[J]. 無機鹽工業(yè), 2019, 51(9): 30
[本文引用: 2]
[34]
Gao H J, Yang H, Wang S F.
Comparative study on optical and electrochemical properties of MFe2O4 (M=Mg, Ca, Ba) nanoparticles
[J]. Trans. Indian Ceram. Soc., 2018, 77: 150
DOIURL [本文引用: 2]
[35]
Ewais E M M, El-Amir A A M, Besisa D H A, et al.
Synthesis of nanocrystalline MgO/MgAl2O4 spinel powders from industrial wastes
[J]. J. Alloys Compd., 2017, 691: 822
DOIURL [本文引用: 2]
[36]
Nassar M Y, Ahmed I S, Samir I.
A novel synthetic route for magnesium aluminate (MgAl2O4) nanoparticles using sol-gel auto combustion method and their photocatalytic properties
[J]. Spectrochim. Acta, 2014, 131A: 329
[本文引用: 1]
[37]
Chen Z S, Liang X P, Fan X W, et al.
Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst
[J].Chin. J. Mater. Res., 2019, 33: 515
[本文引用: 1]
陳子尚, 梁小平, 樊小偉等.
Ce-La-Ag共摻雜TiO2/玄武巖纖維復合光催化劑的制備和性能
[J]. 材料研究學報, 2019, 33: 515
[本文引用: 1]
[38]
Kato T, Okada G, Optical Yanagida T.,
scintillation and dosimeter properties of MgO transparent ceramic and single crystal
[J]. Ceram. Int., 2016, 42: 5617
DOIURL [本文引用: 1]
[39]
Panin G N, Baranov A N, Oh Y J, et al.
Luminescence from ZnO/MgO nanoparticle structures prepared by solution techniques
[J]. Curr. Appl. Phys., 2004, 4: 647
DOIURL [本文引用: 1]
[40]
Cui H M, Wu X F, Chen Y F, et al.
Influence of copper doping on chlorine adsorption and antibacterial behavior of MgO prepared by co-precipitation method
[J]. Mater. Res. Bull., 2015, 61: 511
DOIURL [本文引用: 1]
[41]
Wang X, He Y, Peng G H, et al.
Synthesis and luminescence properties of hollow spherical CaMoO4: Eu3+, Li+ red phosphors
[J].Chin. J. Mater. Res., 2012, 26: 615
[本文引用: 1]
王夏, 何燕, 彭桂花等.
CaMoO4: Eu3+, Li+紅色熒光粉空心球的制備和發(fā)光性能
[J]. 材料研究學報, 2012, 26: 615
[本文引用: 1]
[42]
Li Z, Wu K Y, Wang Y F, et al.
Hydrothermal preparation and photoluminescent property of SrMoO4: Pr3+ red phosphors
[J].Chin. J. Mater. Res., 2017, 31: 274
[本文引用: 1]
李兆, 吳坤堯, 王永鋒等.
SrMoO4: Pr3+紅色熒光粉的水熱合成及光致發(fā)光
[J]. 材料研究學報, 2017, 31: 274
[本文引用: 1]
[43]
Yan Y X, Yang H, Yi Z, et al.
Design of ternary CaTiO3/g-C3N4/AgBr Z-scheme heterostructured photocatalysts and their application for dye photodegradation
[J]. Solid State Sci., 2020, 100: 106102
DOIURL [本文引用: 1]
[44]
Wu H, Jile H, Chen Z Q, et al.
Fabrication of ZnO@MoS2 nanocomposite heterojunction arrays and their photoelectric properties
[J]. Micromachines, 2020, 11: 189
DOIURL
[45]
Guan S T, Yang H, Sun X F, et al.
Preparation and promising application of novel LaFeO3/BiOBr heterojunction photocatalysts for photocatalytic and photo-Fenton removal of dyes
[J]. Opt. Mater., 2020, 100: 109644
DOIURL
[46]
Yi Z, Li X, Wu H, et al.
Fabrication of ZnO@Ag3PO4 core-shell nanocomposite arrays as photoanodes and their photoelectric properties
[J]. Nanomaterials, 2019, 9: 1254
DOIURL [本文引用: 1]
[47]
Peralta M D L R, Pal U, Zeferino R S.
Photoluminescence (PL) quenching and enhanced photocatalytic activity of Au-decorated ZnO nanorods fabricated through microwave-assisted chemical synthesis
[J]. ACS Appl. Mater. Int., 2012, 4: 4807
DOIURL [本文引用: 2]
[48]
Xian T, Di L J, Ma J, et al.
Photocatalytic degradation activity of BaTiO3 nanoparticles modified with Au in simulated sunlight
[J].Chin. J. Mater. Res., 2017, 31: 102
[本文引用: 1]
縣濤, 邸麗景, 馬俊等.
Au改性BaTiO3納米顆粒在模擬太陽光照射下的光催化降解性能
[J]. 材料研究學報, 2017, 31: 102
[本文引用: 1]
Physical properties of MgAl2O4, CoAl2O4, NiAl2O4, CuAl2O4, and ZnAl2O4 spinels synthesized by a solution combustion method
1
2018
聲明:
“MgAl2O4:Mg熒光粉的合成及其發(fā)光性能” 該技術專利(論文)所有權利歸屬于技術(論文)所有人。僅供學習研究,如用于商業(yè)用途,請聯(lián)系該技術所有人。
我是此專利(論文)的發(fā)明人(作者)