本發(fā)明的硼、鋇活化磷酸鐵鋰正極材料,其化學(xué)通式可表述為:LiBxBayFePO4,x=0.00002-0.00005,y=0.0003-0.003;其中Li、B、Ba、Fe、P的mol比為:1mol?Li∶0.00002-0.00005mol?B∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于摻雜少量取代硼、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鈮、鋇活化磷酸鐵鋰正極材料,其化學(xué)通式可表述為:LiNbxBayFePO4,x=0.00002-0.00005,y=0.0003-0.003;其中Li、Nb、Ba、Fe、P的mol比為:1mol?Li∶0.00002-0.00005mol??Nb∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于摻雜少量取代鈮、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鈣、鋇活化磷酸鐵鋰正極材料,其化學(xué)通式可表述為:LiCaxBayFePO4,x=0.002-0.005,y=0.0003-0.003;其中Li、Ca、Ba、Fe、P的mol比為:1mol?Li∶0.002-0.005mol?Ca∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于摻雜少量取代鈣、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),其首次放電容量達155.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過164mAh/g,100次充放電循環(huán)后容量約衰減3.0%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高;由于鋇的價格要比鋰價格低百倍以上,生產(chǎn)成本可降十倍以上。
本發(fā)明的鋁、鋇活化磷酸鐵鋰正極材料,其化學(xué)通式可表述為:LiAlxBayFePO4,x==0.002-0.005,y=0.0003-0.003;其中Li、Al、Ba、Fe、P的mol比為:1mol?Li∶0.002-0.005mol?Al∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P;由于摻雜少量取代鋁、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),其首次放電容量達155.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過164mAh/g,100次充放電循環(huán)后容量約衰減3.0%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高;由于鋇的價格要比鋰價格低百倍以上,生產(chǎn)成本可降十倍以上。
本發(fā)明公開一種鋁電解電容器用中高壓陽極鋁箔機械預(yù)鋰化的方法,涉及了鋁電解電容器用中高壓陽極鋁箔的制備領(lǐng)域。本發(fā)明將表面不富集電極電位比鋁高的Mn、Fe、Co、Ni、Cu、Zn、Cd、Ga、Ge、In、Sn、Pb元素,純度為99.99%,經(jīng)充分退火后其{100}立方織構(gòu)占有率超過95%的中高壓陽極鋁箔進行預(yù)處理,除去表面的氧化膜;然后采用機械預(yù)鋰化,在鋁箔表面壓印出帶有鋰晶核凹坑的鋁箔。采用本發(fā)明帶有鋰晶核凹坑的中高壓陽極鋁箔,在電解腐蝕發(fā)孔時可以顯著提高所生成隧道孔的均勻性,降低隧道孔并孔,因而可以提高鋁箔的比電容。
本發(fā)明的鎂、鋇活化磷酸鐵鋰正極材料制備方法,其特征在于:其鋰源、鐵源、磷酸根源、鎂源、鋇源的原料,按照1mol?Li∶0.002-0.005molMg∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鎂、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鎂、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達155.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過164mAh/g,100次充放電循環(huán)后容量約衰減3.0%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高;由于鋇的價格要比鋰價格低百倍以上,生產(chǎn)成本可降十倍以上。
本發(fā)明的鋅、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鋅源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Zn∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鋅、鋇活化磷酸鐵鋰正極材料。由于摻雜少量取代鋅、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鍶、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鍶源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Sr∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鍶、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鍶、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的釩、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、釩源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?V∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mim高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的釩、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代釩、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鉬、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鉬源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Mo∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鉬、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鉬、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鈹、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鈹源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Be∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鈹、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鈹、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鎳、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鎳源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Ni∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鎳、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鎳、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鎘、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鎘源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Cd∶0.0003-0.003mol?Ba∶1molFe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鎘、鋇活化磷酸鐵鋰正極材料。由于摻雜少量取代鎘、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的錳、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、錳源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Mn∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的錳、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代錳、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鋇活化磷酸鐵鋰正極材料制備方法,其特征在于:其鋰源、鐵源、磷酸根源、鋇源的原料,按照1mol?Li∶0.0003-0.005mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇(AR)介質(zhì)中,高速球磨20h(轉(zhuǎn)速200r/mimn,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鋇活化磷酸鐵鋰正極材料;所的材料其化學(xué)通式可表述為:Li?Ba?FePO4,由于摻雜少量取代鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,鋇離子占據(jù)取代鋰離子,其晶格得到了活化,提高了鋰離子擴散系數(shù),其首次放電容量達145.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過162mAh/g,100次充放電循環(huán)后容量約衰減3.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高;由于鋇的價格要比鋰價格低百倍以上,生產(chǎn)成本可降十倍以上。
本發(fā)明的硒、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、硒源、鋇源的原料,按照1mol?Li∶0.00002-0.00005molSe∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的硒、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代硒、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鈷、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鈷源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Co∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鈷、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鈷、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鈣、鋇活化磷酸鐵鋰正極材料制備方法,其特征在于:其鋰源、鐵源、磷酸根源、鈣源、鋇源的原料,按照1mol?Li∶0.002-0.005mol?Ca∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇(AR)介質(zhì)中,高速球磨20h(轉(zhuǎn)速200r/mimn,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鈣、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鈣、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達155.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過164mAh/g,100次充放電循環(huán)后容量約衰減3.0%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高;由于鋇的價格要比鋰價格低百倍以上,生產(chǎn)成本可降十倍以上。
本發(fā)明提公開了一種摻雜稀土La的磷酸鐵鋰電極材料及制備方法。該電極材料是摻雜La的復(fù)合磷酸鐵鋰電極材料,其制備方法是在磷酸鐵鋰的過程中,原料與稀土La一起混合通過球磨工藝球磨,再真空高溫煅燒,煅燒后即可得該磷酸鐵鋰復(fù)合化合物,摻雜的稀土元素使磷酸鐵鋰材料的晶格常數(shù)增加,提高Li+嵌入和遷出能力,增加材料的充放電穩(wěn)定性,克服電子電導(dǎo)率低的問題。該制備工藝簡單、易操作,流程短、易于實現(xiàn)工業(yè)化。
本實用新型公開了一種新型鋰電頭燈結(jié)構(gòu),包括頭燈蓋和電池盒蓋,所述光杯塑殼的底部連接有鋰電池盒,所述鋰電池設(shè)置在鋰電池盒的內(nèi)部,所述鋰電池上設(shè)有充電保護板,所述電池盒蓋與鋰電池盒連接,所述鋰電池盒上設(shè)有防水開關(guān)、充電指示燈透光硅膠、USB充電口防水膠塞和micro?USB充電扁圓插孔,所述充電保護板上設(shè)有鋰電池保護板DW01、mos管8205A過充過放開關(guān)、充電指示燈、micro?USB母座手機充電接口、場效應(yīng)管2302和二極管SS14。該新型鋰電頭燈結(jié)構(gòu),充電插入口是改用USB手機充電插口,也就是用手機充電就可以完成頭燈的充電,免去了專線專插的環(huán)節(jié);通過充電線路板控制起到一個電池充滿電的時候就會自動斷電,讓電池的使用壽命更長,更耐用,同時也非常的安全。
本發(fā)明的鈮、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鈮源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Nb∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鈮、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鈮、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的硼、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、硼源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?B∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的硼、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代硼、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鋁、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鋁源、鋇源的原料,按照1mol?Li∶0.002-0.005mol?Al∶0.0003-0.003molBa∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鋁、鋇活化磷酸鐵鋰正極材料;所得材料由于摻雜少量取代鋁、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),其首次放電容量達155.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過164mAh/g,100次充放電循環(huán)后容量約衰減3.0%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高;由于鋇的價格要比鋰價格低百倍以上,生產(chǎn)成本可降十倍以上。
本發(fā)明的鍺、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鍺源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Ge∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鍺、鋇活化磷酸鐵鋰正極材料。由于摻雜少量取代鍺、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鉍、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鉍源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Bi∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鉍、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鉍、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的銻、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、銻源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Sb∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得銻、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代銻、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的錫、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、錫源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Sn∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得錫、鋇活化磷酸鐵鋰正極材料。由于摻雜少量取代錫、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鈦、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、鈦源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Ti∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得鈦、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鈦、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的銅、鋇活化磷酸鐵鋰正極材料制備方法,其鋰源、鐵源、磷酸根源、銅源、鋇源的原料,按照1mol?Li∶0.00002-0.00005mol?Cu∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的銅、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代銅、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
本發(fā)明的鋯、鋇活化磷酸鐵鋰正極材料制備方法,其特征在于:其鋰源、鐵源、磷酸根源、鋯源、鋇源的原料,按照1mol?Li∶0.000020.00005mol?Zr∶0.0003-0.003mol?Ba∶1mol?Fe∶1mol?P比例混合后,在無水乙醇介質(zhì)中,轉(zhuǎn)速200r/mimn高速球磨20h,用105-120℃烘干,得到前驅(qū)體,將烘干得到的前驅(qū)體置于高溫爐內(nèi),在普通純氮氣氛中,經(jīng)500-750℃高溫煅燒24h,即得本發(fā)明的鋯、鋇活化磷酸鐵鋰正極材料;由于摻雜少量取代鋯、鋇,有利于控制產(chǎn)物的形貌和粒徑,獲得穩(wěn)定的磷酸鐵鋰化合物,其晶格得到了活化,提高了鋰離子擴散系數(shù),所得材料其首次放電容量達160.52mAh/g;其充放電平臺相對鋰電極電位為3.5V左右,初始放電容量超過168mAh/g,100次充放電循環(huán)后容量約衰減1.2%左右;與未摻雜的LiFePO4對照實施例相比,比容量和循環(huán)穩(wěn)定性有較大的提高。
中冶有色為您提供最新的廣西賀州有色金屬材料制備及加工技術(shù)理論與應(yīng)用信息,涵蓋發(fā)明專利、權(quán)利要求、說明書、技術(shù)領(lǐng)域、背景技術(shù)、實用新型內(nèi)容及具體實施方式等有色技術(shù)內(nèi)容。打造最具專業(yè)性的有色金屬技術(shù)理論與應(yīng)用平臺!