雙相不銹鋼在室溫包含約50%的鐵素體與50%的奧氏體兩相組織,使其同時具有鐵素體不銹鋼與奧氏體不銹鋼的優(yōu)點[1]
與鐵素體不銹鋼相比,雙相不銹鋼的韌性高、脆性轉(zhuǎn)變溫度低、焊接性能和耐晶間腐蝕性能較好,且具有鐵素體不銹鋼線膨脹系數(shù)小、熱導(dǎo)率高等優(yōu)點,焊接時不用進行焊前預(yù)熱和焊后熱處理
與奧氏體不銹鋼相比,雙相不銹鋼的屈服強度顯著提高,耐晶間腐蝕和應(yīng)力腐蝕等性能亦有明顯的改善[2,3]
但是,鐵素體與奧氏體兩相組織的熱變形協(xié)調(diào)性不同使其熱塑性較差,軋制時容易開裂[4,5]
鎳資源的短缺使不銹鋼的成本不斷攀升,為了降低成本各生產(chǎn)企業(yè)聯(lián)合科研機構(gòu)開發(fā)經(jīng)濟型雙相不銹鋼
經(jīng)濟型雙相不銹鋼通過降低Ni含量、添加少量Mo或不添加Mo降低成本,也可改善雙相不銹鋼的焊接性能與熱加工性能[6,7]
2101雙相不銹鋼是一種典型的節(jié)Ni經(jīng)濟型雙相不銹鋼鋼,用廉價N、Mn元素替代部分昂貴的Ni、Mo元素,從而大幅降低成本[8,9]
目前關(guān)于2101雙相不銹鋼的研究,集中在合金元素[8]、冷熱變形[10,11,12,13,14],時效處理[15,16]或熱處理[17]后的組織與性能間關(guān)系以及腐蝕行為[18,19]
本文分析2101雙相不銹鋼連鑄過程的鑄坯組織和生長特點,揭示2101立式連鑄坯的組織生長及轉(zhuǎn)變過程,討論2101雙相不銹鋼在連鑄凝固過程中微觀組織的轉(zhuǎn)變規(guī)律及其對鑄坯質(zhì)量的影響
1 實驗方法1.1 連鑄機及其工藝信息
工廠生產(chǎn)2101雙相不銹鋼板坯用連鑄機為奧鋼聯(lián)(VAI)引進立式連鑄機,其二冷分段及各段長度信息如圖1所示
圖1
圖1工廠用連鑄機的示意圖
Fig.1Schematic diagram of the vertical continuous caster
生產(chǎn)工藝參數(shù):鑄坯的寬度為1.3 m,厚度為0.15 m;鋼液的過熱度為30℃;鑄機的工作拉速為1.0 m/min;結(jié)晶器及二冷區(qū)的冷卻水量信息列于表1
Table 1
表1
表1鑄機冷卻水量信息表
Table 1Parameters of the continuous caster
Location
|
Mold
|
Foot roller
|
No.1
|
No.2
|
No.3
|
No.4
|
No.5
|
No.6
|
No.7
|
Length/m
|
Broad
|
Narrow
|
Broad
|
Narrow
|
0.63
|
1.26
|
1.48
|
2.42
|
2.44
|
2.39
|
2.04
|
0.7
|
0.7
|
0.3
|
0.7
|
Cooling water/L·m-2·s-1
|
2750
|
250
|
8.39
|
4.63
|
3.16
|
2.0
|
0.95
|
0.64
|
0.39
|
0.29
|
0.16
|
1.2 材料的化學(xué)成分
2101雙相不銹鋼的化學(xué)成分由電感耦合等離子體發(fā)射光譜儀(ICP-OES)Optima 7000測定,結(jié)果列于表2
Table 2
表2
表22101雙相不銹鋼化學(xué)成分 (質(zhì)量分?jǐn)?shù),%)
Table 2Chemical composition of 2101duplex stainless steel (%, mass fraction)
C
|
Si
|
Mn
|
Cr
|
Ni
|
Cu
|
Mo
|
B
|
N
|
Al
|
0.025
|
0.65
|
5.15
|
21.4
|
1.42
|
0.3
|
0.22
|
0.001
|
0.205
|
0.003
|
1.3 試樣的制備
在2101雙相不銹鋼連鑄坯上切取試樣,其斷面為1.3 m×0.15 m,一片的厚度約為0.05 m
將鑄坯橫斷面切片分為六段,分別編號
未來分析鑄坯微觀組織分別切取實際連鑄坯寬面(取樣位置-1)及鑄坯窄面(取樣位置-2)外表面到中心處兩塊試樣,試樣的長度為0.075 m(二分之一鑄坯厚度)、寬度為0.01 m、厚度為0.005 m,取樣位置如圖2所示
圖 2
圖 2鑄坯試樣的切樣方向和位置
Fig.2Cut direction and position of the sample on the slab
連鑄坯金相試樣的制備:先對鑄坯橫斷面切片進行線切割并去掉熱影響層,然后用磨床將試樣的表面磨至光滑;用酸煮方式腐蝕鑄坯的宏觀晶界
將鹽酸與水的體積比為1:1的腐蝕液盛于平底塑料容器中,在恒溫水浴鍋中加熱至75℃恒溫,然后將鑄坯試樣腐蝕面向下置于腐蝕液中煮蝕480 s;之后快速取出試樣并用堿水沖洗并用硬毛刷快速刷洗表面,然后用酒精沖洗、吹干;在腐蝕后的1800 s內(nèi)用相機拍攝宏觀組織照片
2 實驗結(jié)果
鑄坯整體組織的照片如圖3所示,3號試樣組織的放大照片如圖4所示
可以看出,鑄坯的組織由表面向中心分為四層
第一層為鑄坯表面激冷層,組織細密、顏色較深,厚度約為0.0065 m;第二層為柱狀晶區(qū),晶粒非常細小形狀狹長,0.02 m后向等軸晶轉(zhuǎn)變;第三層為等軸晶區(qū),分為兩部分:第一部分為溫度梯度變小后形成粗大等軸晶,厚度約為0.034 m;另一部分為鑄坯中心在電磁攪拌作用下形成厚度約0.016 m左右的細小等軸晶區(qū),其鑄坯等軸晶率約為65%
圖3
圖3連鑄坯的組織
Fig.3Microstructure of industrial continuous casting slab
圖4
圖4鑄坯組織的放大圖
Fig.4Enlarged view of microstructure of No. 3
3 討論3.1 宏觀晶粒
為了分析實際連鑄坯組織形成與連鑄機的空間位置及工藝過程對其形成的影響,使用有限元軟件ProCAST數(shù)值計算鑄坯溫度場及坯殼厚度的變化
使用二維切片模型和與工廠生產(chǎn)中所用工藝相同的邊界條件模擬計算2101雙相不銹鋼立式連鑄坯的凝固過程,得到坯殼的生長速度曲線和鑄坯內(nèi)部溫度分布曲線
計算過程參考文獻[20],計算結(jié)果如圖5所示
圖5中△為工廠實測鑄坯寬面中心溫度
計算結(jié)果與工廠實測結(jié)果的對比表明,數(shù)值計算結(jié)果準(zhǔn)確地重現(xiàn)了鑄坯的溫度場分布
從圖5可見,結(jié)晶器內(nèi)產(chǎn)生了厚度為0.0065 m的激冷層,位置在距彎月面約0.47 m處,略大于結(jié)晶器長度的二分之一,位于鋼液沖擊點附近的下回流區(qū)
該激冷層是在結(jié)晶器冷卻的作用下形成的,在水口的強烈沖擊作用下鋼液流動劇烈,使固液界面前沿很難建立穩(wěn)定溫度梯度
這一方面使擇優(yōu)取向的晶粒難以快速長大而形成柱狀晶,另一方面快速流動的鋼液干擾固液界面的溫度梯度及濃度梯度的穩(wěn)定性
因此激冷層的發(fā)展一直延續(xù)到下回流區(qū)高速流動的鋼液開始離開固液界面向上回流的位置
圖5
圖5鑄坯的溫度場和厚度變化Zone
Fig.5Temperature field and thickness growth of the slab
柱狀晶區(qū)的厚度約為0.0185 m,產(chǎn)生在距彎月面約0.48~2.9 m范圍內(nèi)
由圖5中的鑄坯凝固坯殼厚度生長曲線可見,凝固坯殼的生長速度變緩,鑄坯逐漸進入等軸晶形核與生長階段
柱狀晶開始向等軸晶轉(zhuǎn)變(CET轉(zhuǎn)變)時,其初始形成等軸晶較為粗大,距彎月面約為2.9~9.3 m
工廠提供的鑄坯溫度數(shù)據(jù)表明,距彎月面2.9 m鑄坯進入二冷第3段時鑄坯表面的溫度約為1006~1018℃,且在等軸晶生成的過程中鑄坯表面的溫度始終控制于該溫度范圍內(nèi)
這使鑄坯內(nèi)部溫度梯度減小,鑄坯中心一定寬度范圍內(nèi)的鋼液同時符合晶核形成時的過冷條件,因此大量晶核同時產(chǎn)生而向CET轉(zhuǎn)變、形成等軸晶區(qū)
為了減小鑄坯軋制過程中的邊裂,在二冷2區(qū)之后適當(dāng)降低鑄坯表面冷卻強度而將鑄坯表面溫度控制并恒定在合理的范圍內(nèi)
這有助于均勻坯殼內(nèi)部溫度并促進CET轉(zhuǎn)變盡早進行,從而提高鑄坯等軸晶率并擴大角部的等軸晶區(qū)域,提高鑄坯邊角部的變形協(xié)調(diào)能力,有利于減少軋制邊裂缺陷提高連鑄坯質(zhì)量
同時,凝固末端電磁攪拌及結(jié)晶雨的作用使距彎月面約9.4~9.7 m鑄坯中心寬度約0.032 m的糊狀區(qū)內(nèi)形核率進一步提高,顯著減小鑄坯中心等軸晶粒尺寸,有效調(diào)控鑄坯中心晶粒尺寸,并減少鑄坯中心縮孔及疏松的形成,從而進一步提高鑄坯的質(zhì)量
3.2 鑄坯凝固過程中微觀組織的轉(zhuǎn)變
雙相不銹鋼中鐵素體與奧氏體兩相的物理性能差別較大
例如,鐵素體的導(dǎo)熱系數(shù)約為奧氏體的1.3~1.5倍,而線膨脹系數(shù)僅為奧氏體的60%~70%,其硬度和塑性也有較大的差別
這些因素都使鑄坯在凝固和成型過程中產(chǎn)生內(nèi)應(yīng)力,增大了出現(xiàn)裂紋的概率
大量研究和生產(chǎn)實踐表明,雙相不銹鋼鑄坯在凝固過程中析出相的比例、形貌和分布對鑄坯裂紋缺陷的形成和擴展有很大的影響[19,21,22]
因此,深入了解鑄態(tài)組織形成過程、形貌、尺寸、分布規(guī)律,對制定合理連鑄工藝,有效提高鑄坯質(zhì)量有極大的指導(dǎo)意義
連鑄坯內(nèi)部不同位置處微觀組織的對比,如圖6所示
圖6a、d分別給出了寬、窄外表面激冷層組織,(b)、(e)分別為寬、窄面過度層組織,(c)、(f)分別為寬、窄面中心等軸晶區(qū)組織
連鑄坯寬面與窄面的冷卻制度不同
水量配比不同使兩個表面的冷卻強度不同,因此可對比兩側(cè)面微觀組織的變化說明冷卻強度對奧氏體形貌變化的影響
圖6
圖6鑄坯的寬面和窄面微觀組織的對比
Fig.6Microstructure at wide and narrow side of slab (a) Surface of wide side; (b) 15 mm from wide side surface; (c) 55 mm from wide side surface;(d) Surface of narrow side; (e) 15mm from narrow side surface; (f) 55 mm from narrow side surface
在鑄坯凝固的初期,在結(jié)晶器內(nèi)激冷的作用下形成大量細小等軸晶激冷層,并通過固態(tài)相變使奧氏體在初生鐵素體晶界處形核并長大,奧氏體組織多呈細小的針狀或塊狀,如圖6a所示
由鑄坯表面向內(nèi)部奧氏體組織明顯逐漸粗化,其形態(tài)多呈細長的條狀或針狀,如圖6b所示
在固態(tài)相變過程中,奧氏體新相的形成屬于擴散型相變
在擴散型相變中,非共格界面的生長速率遠大于半共格界面
條狀奧氏體端面與鐵素體基體間屬于非共格界面,而兩個側(cè)面與基體界面屬于半共格界面[23],因此奧氏體形態(tài)多呈現(xiàn)為狹長條狀或針狀
冷卻速率極大地影響合金元素在固相中的擴散速率,所以擴散型相變中相含量及形態(tài)也受控于冷卻速率
從寬、窄面組織照片圖6a與d、b與e的對比中發(fā)現(xiàn),鑄坯寬面的冷卻速率較大,奧氏體的存在形式多呈現(xiàn)為細長的條狀或針狀;而窄面的冷卻速率較低,奧氏體主要呈彌散的短條狀或塊狀生長
這些結(jié)果與周磊磊等用共聚焦顯微鏡對雙相不銹鋼在不同冷卻速率下原位觀察鐵素體向奧氏體轉(zhuǎn)變過程得到的結(jié)論一致[24]
而彌散分布的塊狀奧氏體使兩相間具有更好的協(xié)調(diào)性,有利于改善鑄坯的力學(xué)性能
在激冷層形成后等軸晶通過擇優(yōu)取向競爭生長而形成柱狀晶區(qū),部分柱狀晶在生長的過程中又由于生長位向關(guān)系逐漸被淘汰,其過程如圖7所示
圖7a中晶粒1、2在初期競爭階段形核并逐漸長大,晶粒3的生長空間受到晶粒2與下方晶粒的擠壓而停止生長,沒有形成較大的柱狀晶
在繼續(xù)生長過程中晶粒1持續(xù)長大,而晶粒2在生長過程中生長空間被其他晶粒占據(jù)而停止生長,從而形成一個完整的柱狀晶,如圖7b所示
圖7
圖7柱狀晶競爭生長與終止生長
Fig.7Competition growth (a) and termination (b) of columnar crystals
圖6c和f中的取樣位置處于鑄坯中心等軸晶區(qū)
鑄坯中心的溫度均勻,冷卻速率低,所以奧氏體組織粗大
奧氏體在初生鐵素體晶界上的形核速率比晶粒內(nèi)大,達到形核所需過冷度時奧氏體快速在鐵素體的晶界形核
冷卻速率較低時晶粒內(nèi)部溫度均勻、過冷度較小,不利于奧氏體大量形核;但是緩慢冷卻有利于合金元素的充分?jǐn)U散,為晶界處奧氏體的形核提供了足夠的生長時間和空間,從而使晶界處奧氏體向晶內(nèi)長大,成為細長的條狀奧氏體
冷卻速率較高時晶內(nèi)奧氏體形核率提高,但是晶界處奧氏體沒有充足時間生長,所以其長度較小
窄面的冷卻速率小于寬面冷卻速率,所以其奧氏體形貌多為較粗的針狀
針狀奧氏體組織對鑄坯力學(xué)性能的破壞性較大,使晶界處貧Cr而降低鋼的強度、韌性及塑性、提高韌脆轉(zhuǎn)化溫度,同時也降低雙相不銹鋼耐晶間腐蝕的能力[25]
同時,組織中尖銳的端部對鐵素體基體的連續(xù)性也有極大的影響
而奧氏體細小且彌散分布在鐵素體基體內(nèi),則能提高材料的協(xié)調(diào)變形能力,有利于提高材料力學(xué)性能
圖6c給出了典型的鑄坯中心等軸晶粒
可以看出,寬面冷卻速率較大時晶界和晶內(nèi)的奧氏體呈現(xiàn)魚骨狀或者杉葉狀,彌散分布在鐵素體基體,使鑄坯的力學(xué)性能較高
因此,在鑄坯中心固態(tài)相變區(qū)域應(yīng)保持較大的冷卻速度,抑制針狀奧氏體組織的形成以得到細化及彌散的奧氏體,改善鑄坯中心質(zhì)量
在二次冷卻2區(qū)之后適當(dāng)降低鑄坯表面的冷卻強度有助于降低坯殼內(nèi)部的溫度梯度,促進CET轉(zhuǎn)變,提高鑄坯等軸晶率和擴大角部的等軸晶區(qū)域
鑄坯中心的固態(tài)相變區(qū)域應(yīng)保持較大的冷卻速度以抑制針狀奧氏體組織的形成,得到細化及彌散的奧氏體,改善鑄坯中心質(zhì)量
綜合以上兩個因素,應(yīng)該在二冷足輥區(qū)之后適當(dāng)使鑄坯的溫度升高以控制宏觀晶粒的形成,在二冷6區(qū)之后提高冷卻強度以調(diào)整鑄坯中心形成的奧氏體形態(tài),從而提高鑄坯的質(zhì)量
4 結(jié)論
(1) 2101雙相不銹鋼的CET轉(zhuǎn)變發(fā)生于二冷2區(qū)末端距鑄坯表面0.025 m處,適當(dāng)降低鑄坯表面冷卻強度有助于減小坯殼內(nèi)部溫度梯度,促進CET轉(zhuǎn)變,提高鑄坯等軸晶率及擴大角部的等軸晶區(qū)域,有利于提高連鑄坯的質(zhì)量
(2) 在鑄坯等軸晶區(qū)提高冷卻速率有利于晶內(nèi)及晶界處奧氏體細化、減小晶界處針狀奧氏體組織數(shù)量及尺寸
因此,在二冷6區(qū)之后提高冷卻強度可調(diào)整鑄坯中心形成的奧氏體形態(tài),在一定程度上提高鑄坯的熱變形能力
參考文獻
View Option 原文順序文獻年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Ornek C, Engelberg D L.
Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel
[J]. Mat. Sci. Eng. A-struct, 2016, 666: 269
DOIURL [本文引用: 1]
[2]
Nilsson J O.
Super Duplex Stainless Steels
[J]. Mater. Sci. Tech., 1992, 8(8): 685
DOIURL [本文引用: 1]
[3]
Singhal L K, Poojary P T, Kumar A.
Comparative Evaluation of Low Nickel and Nickel Free Lean Duplex Stainless Steels with 316L in a Variety of Corrosive Media
[J]. T. Indian I. Metals., 2013, 66(1): 25
DOIURL [本文引用: 1] " />
Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes sigma- and chi-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than similar to 20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.
[11]
Liu Y, Yan H, Wang X, et al.
Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101
[J]. Mat. Sci. Eng. A-struct, 2013, 575: 41
DOIURL [本文引用: 1]
[12]
Gao Z J, Li J Y, Feng Z H, et al.
Influence of hot rolling on the microstructure of lean duplex stainless steel 2101
[J]. Int. J. Min. Met. Mater., 2019, 26(10): 1266
DOIURL [本文引用: 1]
[13]
Feng Z H, Li J Y, Wang Y D.
Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101
[J]. Int. J. Min. Met. Mater., 2016, 23(4): 425
DOIURL [本文引用: 1]
[14]
Patra S, Ghosh A, Singhal L K, et al.
Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture
[J]. Metall Mater. Trans. A, 2017, 48A1): 294
[本文引用: 1]
[15]
Maetz J Y, Cazottes S, Verdu C, et al.
Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging
[J]. Microsc. Microanal., 2016, 22(2): 463
DOIURLPMID [本文引用: 1] class="outline_tb" " />
Duplex stainless steels (DSS) may be defined as a category of steels with a two-phase ferritic-austenitic microstructure, which combines good mechanical and corrosion properties. However, these steels can undergo significant microstructural modification as a consequence of either thermo-mechanical treatments (ferrite decomposition, which causes sigma- and chi-phase formation and nitride precipitation) or plastic deformation at room temperature [austenite transformation into strain-induced martensite (SIM)]. These secondary phases noticeably affect the properties of DSS, and therefore are of huge industrial interest. In the present work, SIM formation was investigated in a 2101 lean DSS. The material was subjected to cold rolling at various degrees of deformation (from 10 to 80% thickness reduction) and the microstructure developed after plastic deformation was investigated by electron backscattered diffraction, X-ray diffraction measurements, and hardness and magnetic tests. It was observed that SIM formed as a consequence of deformations higher than similar to 20% and residual austenite was still observed at 80% of thickness reduction. Furthermore, a direct relationship was found between microstructure and magnetic properties.
[11]
Liu Y, Yan H, Wang X, et al.
Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101
[J]. Mat. Sci. Eng. A-struct, 2013, 575: 41
[12]
Gao Z J, Li J Y, Feng Z H, et al.
Influence of hot rolling on the microstructure of lean duplex stainless steel 2101
[J]. Int. J. Min. Met. Mater., 2019, 26(10): 1266
[13]
Feng Z H, Li J Y, Wang Y D.
Mechanism of hot-rolling crack formation in lean duplex stainless steel 2101
[J]. Int. J. Min. Met. Mater., 2016, 23(4): 425
[14]
Patra S, Ghosh A, Singhal L K, et al.
Hot Deformation Behavior of As-Cast 2101 Grade Lean Duplex Stainless Steel and the Associated Changes in Microstructure and Crystallographic Texture
[J]. Metall Mater. Trans. A, 2017, 48A1): 294
[15]
Maetz J Y, Cazottes S, Verdu C, et al.
Microstructural Evolution in 2101 Lean Duplex Stainless Steel During Low- and Intermediate-Temperature Aging
[J]. Microsc. Microanal., 2016, 22(2): 463
PMID
The microstructural evolution of a 2101 lean duplex stainless steel (DSS) during isothermal aging from room temperature to 470 degrees C was investigated using thermoelectric power (TEP) measurements to follow the kinetics, atom probe tomography, and transmission electron microscopy. Despite the low Ni, Cr, and Mo contents, the lean DSS was sensitive to alpha-alpha' phase separation and Ni-Mn-Si-Al-Cu clustering at intermediate temperatures. The time-temperature pairs characteristic of the early stages of ferrite decomposition were determined from the TEP kinetics. Considering their composition and locations, the clusters are most likely G phase precursors.
[16]
Maetz J Y, Cazottes S, Verdu C, et al.
Precipitation and Phase Transformations in 2101 Lean Duplex Stainless Steel During Isothermal Aging
[J]. Metall Mater. Trans. A, 2016, 47A(1): 239
[17]
Zhang L, Zhang W, Jiang Y, et al.
Influence of annealing treatment on the corrosion resistance of lean duplex stainless steel 2101
[J]. Electrochim. Acta, 2009, 54(23): 5387
[18]
He L, Jiang Y, Guo Y, et al.
Electrochemical noise analysis of duplex stainless steel 2101 exposed to different corrosive solutions
[J]. Corros. Eng. Sci. Techn., 2016, 51(3): 187
[19]
Hu Y, Li Y, He Y, et al.
Effects of Micro-Sized Ferrite and Austenite Grains on the Pitting Corrosion Behavior of Lean Duplex Stainless Steel 2101
[J]. Metals, 2017, 7(5): 168
[本文引用: 2]
[20]
Bai L.
The research of microstructure and thermal stress in 2101 duplex stainless steel of the continuous catsing slab
[D].Shanghai: Shanghai University, 2016.
(
白亮.
2101雙相不銹鋼連鑄凝固過程組織與熱應(yīng)力研究
[D]. 上海: 上海大學(xué), 2016)
[21]
Ameri A A H, Escobedo D J P, Ashraf M, et al.
Investigating the Anisotropic Behaviour of Lean Duplex Stainless Steel 2101 [A]. Characterization of Minerals, Metals, and Materials 2017 [C]
San Diego: TMS Annual Meeting and Exhibition, 2017: 181
[22]
Hu Y, Shi Y, Shen X, et al.
Microstructure Evolution and Selective Corrosion Resistance in Underwater Multipass 2101 Duplex Stainless Steel Welding Joints
[J]. Metall Mater. Trans. A, 2018, 49A(8): 3306
[23]
Yin H, Emi T, Shibata H.
Morphological instability of delta-ferrite/gamma-austenite interphase boundary in low carbon steels
[J]. Acta Mater., 1999, 47(5): 1523
[24]
Zhou L L, Lin D W, Zhou C D, et al.
In-situ observation of Delta/Gamma phase change process of duplex stainless steel at different cooling rates
[J].Shanghai Metal, 2007, 29(03): 19
(
周磊磊, 林大為, 周燦棟等.
不同冷卻速度下雙相不銹鋼δ/γ相變過程的原位觀察
[J]. 上海金屬, 2007, 29(03): 19)
[25]
Maki T, Furuhara T, Tsuzaki K.
Microstructure development by thermomechanical processing in duplex stainless steel
[J]. ISIJ INT., 2001, 41(6): 571
Towards understanding the effect of deformation mode on stress corrosion cracking susceptibility of grade 2205 duplex stainless steel
1
2016
聲明:
“2101節(jié)鎳雙相不銹鋼立式連鑄板坯的組織轉(zhuǎn)變” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)